
C H A P T E R 18

Parallel Databases

Practice Exercises

18.1 In a range selection on a range-partitioned attribute, it is possible that
only one disk may need to be accessed. Describe the benefits and draw-
backs of this property.
Answer: If there are few tuples in the queried range, then each query
can be processed quickly on a single disk. This allows parallel execution
of queries with reduced overhead of initiating queries on multiple
disks.
On the other hand, if there are many tuples in the queried range, each
query takes a long time to execute as there is no parallelism within
its execution. Also, some of the disks can become hot-spots, further
increasing response time.
Hybrid range partitioning, in which small ranges (a few blocks each)
are partitioned in a round-robin fashion, provides the benefits of range
partitioning without its drawbacks.

18.2 What form of parallelism (interquery, interoperation, or intraoperation)
is likely to be the most important for each of the following tasks?

a. Increasing the throughput of a system with many small queries

b. Increasing the throughput of a system with a few large queries,
when the number of disks and processors is large

Answer:

a. When there are many small queries, inter-query parallelism gives
good throughput. Parallelizing each of these small queries would
increase the initiation overhead, without any significant reduction
in response time.

b. With a few large queries, intra-query parallelism is essential to
get fast response times. Given that there are large number of
processors and disks, only intra-operation parallelism can take
advantage of the parallel hardware – for queries typically have

21

22 Chapter 18 Parallel Databases

few operations, but each one needs to process a large number of
tuples.

18.3 With pipelined parallelism, it is often a good idea to perform several op-
erations in a pipeline on a single processor, even when many processors
are available.

a. Explain why.

b. Would the arguments you advanced in part a hold if the machine
has a shared-memory architecture? Explain why or why not.

c. Would the arguments in part a hold with independent paral-
lelism? (That is, are there cases where, even if the operations are
not pipelined and there are many processors available, it is still a
good idea to perform several operations on the same processor?)

Answer:

a. The speed-up obtained by parallelizing the operations would be
offset by the data transfer overhead, as each tuple produced by
an operator would have to be transferred to its consumer, which
is running on a different processor.

b. In a shared-memory architecture, transferring the tuples is very
efficient. So the above argument does not hold to any significant
degree.

c. Even if two operations are independent, it may be that they both
supply their outputs to a common third operator. In that case,
running all three on the same processor may be better than trans-
ferring tuples across processors.

18.4 Consider join processing using symmetric fragment and replicate with
range partitioning. How can you optimize the evaluation if the join
condition is of the form | r.A− s.B | ≤ k, where k is a small constant?
Here, | x | denotes the absolute value of x. A join with such a join
condition is called a band join.
Answer: Relation r is partitioned into n partitions, r0, r1, . . . , rn−1, and
s is also partitioned into n partitions, s0, s1, . . . , sn−1. The partitions are
replicated and assigned to processors as shown below.

Practice Exercises 23

. . . .

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

s0 s1 s2 s3 sn 1

r0

r1

r2

rn 1

P0,0 P0,1

P1,0 P1,1 P1,2

P2,1 P2,2 P2,3

Pn 1,
n 1

Each fragment is replicated on 3 processors only, unlike in the general
case where it is replicated on n processors. The number of processors
required is now approximately 3n, instead of n2 in the general case.
Therefore given the same number of processors, we can partition the
relations into more fragments with this optimization, thus making each
local join faster.

18.5 Recall that histograms are used for constructing load-balanced range
partitions.

a. Suppose you have a histogram where values are between 1 and
100, and are partitioned into 10 ranges, 1–10, 11–20, . . . , 91–100,
with frequencies 15, 5, 20, 10, 10, 5, 5, 20, 5, and 5, respectively.
Give a load-balanced range partitioning function to divide the
values into 5 partitions.

b. Write an algorithm for computing a balanced range partition with
p partitions, given a histogram of frequency distributions contain-
ing n ranges.

Answer:

a. A partitioning vector which gives 5 partitions with 20 tuples in
each partition is: [21, 31, 51, 76]. The 5 partitions obtained are
1−20, 21−30, 31−50, 51−75 and 76−100. The assumption made
in arriving at this partitioning vector is that within a histogram
range, each value is equally likely.

b. Let the histogram ranges be called h1, h2, . . . , hh , and the parti-
tions
p1, p2, . . . , pp. Let the frequencies of the histogram ranges be

24 Chapter 18 Parallel Databases

n1, n2, . . . , nh . Each partition should contain N/p tuples, where
N = 6h

i=1ni .
To construct the load balanced partitioning vector, we need to
determine the value of the kth

1 tuple, the value of the kth
2 tuple and

so on, where k1 = N/p, k2 = 2N/p etc, until kp−1. The partitioning
vector will then be [k1, k2, . . . , kp−1]. The value of the kth

i tuple is
determined as follows. First determine the histogram range h j in
which it falls. Assuming all values in a range are equally likely,
the kth

i value will be

s j +
(

e j − s j

)

∗
ki j

n j

where
s j : first value in h j

e j : last value in h j

ki j : ki − 6
j−1

l=1 nl

18.6 Large-scale parallel database systems store an extra copy of each data
item on disks attached to a different processor, to avoid loss of data if
one of the processors fails.

a. Instead of keeping the extra copy of data items from a processor
at a single backup processor, it is a good idea to partition the
copies of the data items of a processor across multiple processors.
Explain why.

b. Explain how virtual-processor partitioning can be used to ef-
ficiently implement the partitioning of the copies as described
above.

c. What are the benefits and drawbacks of using RAID storage in-
stead of storing an extra copy of each data item?

Answer: FILL

18.7 Suppose we wish to index a large relation that is partitioned. Can
the idea of partitioning (including virtual processor partitioning) be
applied to indices? Explain your answer, considering the following
two cases (assuming for simplicity that partitioning as well as indexing
are on single attributes):

a. Where the index is on the partitioning attribute of the relation.

b. Where the index is on an attribute other than the partitioning
attribute of the relation.

Answer: FILL

18.8 Suppose a well-balanced range-partitioning vector had been chosen
for a relation, but the relation is subsequently updated, making the
partitioning unbalanced. Even if virtual-processor partitioning is used,

Practice Exercises 25

a particular virtual processor may end up with a very large number of
tuples after the update, and repartitioning would then be required.

a. Suppose a virtual processor has a significant excess of tuples (say,
twice the average). Explain how repartitioning can be done by
splitting the partition, thereby increasing the number of virtual
processors.

b. If, instead of round-robin allocation of virtual processors, virtual
partitions can be allocated to processors in an arbitrary fashion,
with a mapping table tracking the allocation. If a particular node
has excess load (compared to the others), explain how load can
be balanced.

c. Assuming there are no updates, does query processing have to be
stopped while repartitioning, or reallocation of virtual processors,
is carried out? Explain your answer.

Answer: FILL

C H A P T E R 19

Distributed Databases

Practice Exercises

19.1 How might a distributed database designed for a local-area network differ
from one designed for a wide-area network?
Answer: Data transfer on a local-area network (LAN) is much faster than
on a wide-area network (WAN). Thus replication and fragmentation will
not increase throughput and speed-up on a LAN, as much as in a WAN.
But even in a LAN, replication has its uses in increasing reliability and
availability.

19.2 To build a highly available distributed system, you must know what kinds
of failures can occur.

a. List possible types of failure in a distributed system.

b. Which items in your list from part a are also applicable to a central-
ized system?

Answer:

a. The types of failure that can occur in a distributed system include

i. Site failure.

ii. Disk failure.

iii. Communication failure, leading to disconnection of one or more
sites from the network.

b. The first two failure types can also occur on centralized systems.

19.3 Consider a failure that occurs during 2PC for a transaction. For each pos-
sible failure that you listed in Practice Exercise 19.2a, explain how 2PC

ensures transaction atomicity despite the failure.
Answer: A proof that 2PC guarantees atomic commits/aborts inspite of
site and link failures, follows. The main idea is that after all sites reply
with a <ready T> message, only the co-ordinator of a transaction can
make a commit or abort decision. Any subsequent commit or abort by a

1

2 Chapter 19 Distributed Databases

site can happen only after it ascertains the co-ordinator’s decision, either
directly from the co-ordinator, or indirectly from some other site. Let us
enumerate the cases for a site aborting, and then for a site committing.

a. A site can abort a transaction T (by writing an <abort T> log record)
only under the following circumstances:

i. It has not yet written a <ready T> log-record. In this case, the
co-ordinator could not have got, and will not get a <ready T>

or <commit T> message from this site. Therefore only an abort
decision can be made by the co-ordinator.

ii. It has written the <ready T> log record, but on inquiry it found
out that some other site has an <abort T> log record. In this
case it is correct for it to abort, because that other site would
have ascertained the co-ordinator’s decision (either directly or
indirectly) before actually aborting.

iii. It is itself the co-ordinator. In this case also no site could have
committed, or will commit in the future, because commit deci-
sions can be made only by the co-ordinator.

b. A site can commit a transaction T (by writing an <commit T> log
record) only under the following circumstances:

i. It has written the <ready T> log record, and on inquiry it found
out that some other site has a <commit T> log record. In this
case it is correct for it to commit, because that other site would
have ascertained the co-ordinator’s decision (either directly or
indirectly) before actually committing.

ii. It is itself the co-ordinator. In this case no other participating
site can abort/ would have aborted, because abort decisions are
made only by the co-ordinator.

19.4 Consider a distributed system with two sites, A and B. Can site A distin-
guish among the following?

• B goes down.

• The link between A and B goes down.

• B is extremely overloaded and response time is 100 times longer than
normal.

What implications does your answer have for recovery in distributed
systems?
Answer:
Site A cannot distinguish between the three cases until communication
has resumed with site B. The action which it performs while B is inacces-
sible must be correct irrespective of which of these situations has actually

Practice Exercises 3

occurred, and must be such that B can re-integrate consistently into the
distributed system once communication is restored.

19.5 The persistent messaging scheme described in this chapter depends on
timestamps combined with discarding of received messages if they are too
old. Suggest an alternative scheme based on sequence numbers instead
of timestamps.
Answer: We can have a scheme based on sequence numbers similar to
the scheme based on timestamps. We tag each message with a sequence
number that is unique for the (sending site, receiving site) pair. The num-
ber is increased by 1 for each new message sent from the sending site to
the receiving site.
The receiving site stores and acknowledges a received message only if it
has received all lower numbered messages also; the message is stored in
the received-messages relation.
The sending site retransmits a message until it has received an ack from the
receiving site containing the sequence number of the transmitted message,
or a higher sequence number. Once the acknowledgment is received, it
can delete the message from its send queue.
The receiving site discards all messages it receives that have a lower
sequence number than the latest stored message from the sending site. The
receiving site discards from received-messages all but the (number of the)
most recent message from each sending site (message can be discarded
only after being processed locally).
Note that this scheme requires a fixed (and small) overhead at the receiving
site for each sending site, regardless of the number of messages received.
In contrast the timestamp scheme requires extra space for every message.
The timestamp scheme would have lower storage overhead if the number
of messages received within the timeout interval is small compared to the
number of sites, whereas the sequence number scheme would have lower
overhead otherwise.

19.6 Give an example where the read one, write all available approach leads
to an erroneous state.
Answer: Consider the balance in an account, replicated at N sites. Let the
current balance be $100 – consistent across all sites. Consider two trans-
actions T1 and T2 each depositing $10 in the account. Thus the balance
would be $120 after both these transactions are executed. Let the transac-
tions execute in sequence: T1 first and then T2. Let one of the sites, say s,
be down when T1 is executed and transaction t2 reads the balance from
site s. One can see that the balance at the primary site would be $110 at
the end.

19.7 Explain the difference between data replication in a distributed system
and the maintenance of a remote backup site.
Answer: In remote backup systems all transactions are performed at
the primary site and the data is replicated at the remote backup site. The

4 Chapter 19 Distributed Databases

remote backup site is kept synchronized with the updates at the primary
site by sending all log records. Whenever the primary site fails, the remote
backup site takes over processing.
The distributed systems offer greater availability by having multiple
copies of the data at different sites whereas the remote backup systems
offer lesser availability at lower cost and execution overhead.
In a distributed system, transaction code runs at all the sites whereas in
a remote backup system it runs only at the primary site. The distributed
system transactions follow two-phase commit to have the data in con-
sistent state whereas a remote backup system does not follow two-phase
commit and avoids related overhead.

19.8 Give an example where lazy replication can lead to an inconsistent database
state even when updates get an exclusive lock on the primary (master)
copy.
Answer: Consider the balance in an account, replicated at N sites. Let the
current balance be $100 – consistent across all sites. Consider two trans-
actions T1 and T2 each depositing $10 in the account. Thus the balance
would be $120 after both these transactions are executed. Let the trans-
actions execute in sequence: T1 first and then T2. Suppose the copy of the
balance at one of the sites, say s, is not consistent – due to lazy replication
strategy – with the primary copy after transaction T1 is executed and let
transaction T2 read this copy of the balance. One can see that the balance
at the primary site would be $110 at the end.

19.9 Consider the following deadlock-detection algorithm. When transaction
Ti , at site S1, requests a resource from Tj , at site S3, a request message with
timestamp n is sent. The edge (Ti , Tj , n) is inserted in the local wait-for
graph of S1. The edge (Ti , Tj , n) is inserted in the local wait-for graph of
S3 only if Tj has received the request message and cannot immediately
grant the requested resource. A request from Ti to Tj in the same site is
handled in the usual manner; no timestamps are associated with the edge
(Ti , Tj). A central coordinator invokes the detection algorithm by sending
an initiating message to each site in the system.

On receiving this message, a site sends its local wait-for graph to the
coordinator. Note that such a graph contains all the local information that
the site has about the state of the real graph. The wait-for graph reflects
an instantaneous state of the site, but it is not synchronized with respect
to any other site.

When the controller has received a reply from each site, it constructs a
graph as follows:

• The graph contains a vertex for every transaction in the system.

• The graph has an edge (Ti , Tj) if and only if:

◦ There is an edge (Ti , Tj) in one of the wait-for graphs.

Practice Exercises 5

◦ An edge (Ti , Tj , n) (for some n) appears in more than one wait-for
graph.

Show that, if there is a cycle in the constructed graph, then the system is
in a deadlock state, and that, if there is no cycle in the constructed graph,
then the system was not in a deadlock state when the execution of the
algorithm began.
Answer: Let us say a cycle Ti → Tj → · · · → Tm → Ti exists in the graph
built by the controller. The edges in the graph will either be local edges
of the from (Tk, Tl) or distributed edges of the form (Tk, Tl, n). Each local
edge (Tk, Tl) definitely implies that Tk is waiting for Tl . Since a distributed
edge (Tk, Tl, n) is inserted into the graph only if Tk ’s request has reached
Tl and Tl cannot immediately release the lock, Tk is indeed waiting for Tl .
Therefore every edge in the cycle indeed represents a transaction waiting
for another. For a detailed proof that this imlies a deadlock refer to Stuart
et al. [1984].
We now prove the converse implication. As soon as it is discovered that
Tk is waiting for Tl :

a. a local edge (Tk, Tl) is added if both are on the same site.

b. The edge (Tk, Tl, n) is added in both the sites, if Tk and Tl are on
different sites.

Therefore, if the algorithm were able to collect all the local wait-for graphs
at the same instant, it would definitely discover a cycle in the constructed
graph, in case there is a circular wait at that instant. If there is a circu-
lar wait at the instant when the algorithm began execution, none of the
edges participating in that cycle can disappear until the algorithm fin-
ishes. Therefore, even though the algorithm cannot collect all the local
graphs at the same instant, any cycle which existed just before it started
will anyway be detected.

19.10 Consider a relation that is fragmented horizontally by plant number:

employee (name, address, salary, plant number)

Assume that each fragment has two replicas: one stored at the New York
site and one stored locally at the plant site. Describe a good processing
strategy for the following queries entered at the San Jose site.

a. Find all employees at the Boca plant.

b. Find the average salary of all employees.

c. Find the highest-paid employee at each of the following sites: Toronto,
Edmonton, Vancouver, Montreal.

d. Find the lowest-paid employee in the company.

6 Chapter 19 Distributed Databases

Answer:

a. i. Send the query 5name (employee) to the Boca plant.

ii. Have the Boca location send back the answer.

b. i. Compute average at New York.

ii. Send answer to San Jose.

c. i. Send the query to find the highest salaried employee to Toronto,
Edmonton, Vancouver, and Montreal.

ii. Compute the queries at those sites.

iii. Return answers to San Jose.

d. i. Send the query to find the lowest salaried employee to New York.

ii. Compute the query at New York.

iii. Send answer to San Jose.

19.11 Compute r ⋉ s for the relations of Figure 19.9.
Answer: The result is as follows.

r ⋉ s = A B C

1 2 3
5 3 2

19.12 Give an example of an application ideally suited for the cloud and another
that would be hard to implement successfully in the cloud. Explain your
answer.
Answer: Any application that is easy to partition, and does not need
strong guarantees of consistency across partitions, is ideally suited to the
cloud. For example, Web-based document storage systems (like Google
docs), and Web based email systems (like Hotmail, Yahoo! mail or GMail),
are ideally suited to the cloud. The cloud is also ideally suited to certain
kinds of data analysis tasks where the data is already on the cloud; for
example, the Google Map-Reduce framework, and Yahoo! Hadoop are
widely used for data analysis of Web logs such as logs of URLs clicked by
users.
Any database application that needs transactional consistency would
be hard to implement successfully in the cloud; examples include bank
records, academic records of students, and many other types of organiza-
tional records.

19.13 Given that the LDAP functionality can be implemented on top of a database
system, what is the need for the LDAP standard?
Answer: The reasons are:

a. Directory access protocols are simplified protocols that cater to a
limited type of access to data.

Practice Exercises 7

b. Directory systems provide a simple mechanism to name objects in
a hierarchical fashion which can be used in a distributed directory
system to specify what information is stored in each of the directory
servers. The directory system can be set up to automatically forward
queries made at one site to the other site, without user intervention.

19.14 Consider a multidatabase system in which it is guaranteed that at most
one global transaction is active at any time, and every local site ensures
local serializability.

a. Suggest ways in which the multidatabase system can ensure that
there is at most one active global transaction at any time.

b. Show by example that it is possible for a nonserializable global
schedule to result despite the assumptions.

Answer:

a. We can have a special data item at some site on which a lock will
have to be obtained before starting a global transaction. The lock
should be released after the transaction completes. This ensures the
single active global transaction requirement. To reduce dependency
on that particular site being up, we can generalize the solution by
having an election scheme to choose one of the currently up sites to
be the co-ordinator, and requiring that the lock be requested on the
data item which resides on the currently elected co-ordinator.

b. The following schedule involves two sites and four transactions. T1

and T2 are local transactions, running at site 1 and site 2 respectively.
TG1 and TG2 are global transactions running at both sites. X1, Y1 are
data items at site 1, and X2, Y2 are at site 2.

T1 T2 TG1 TG2

write(Y1)

read(Y1)

write(X 2)

read(X 2)

write(Y2)

read(Y2)

write(X 1)

read(X 1)

In this schedule, TG2 starts only after TG1 finishes. Within each site,
there is local serializability. In site 1, TG2 → T1 → TG1 is a serializ-
ability order. In site 2, TG1 → T2 → TG2 is a serializability order. Yet
the global schedule schedule is non-serializable.

19.15 Consider a multidatabase system in which every local site ensures local
serializability, and all global transactions are read only.

8 Chapter 19 Distributed Databases

a. Show by example that nonserializable executions may result in such
a system.

b. Show how you could use a ticket scheme to ensure global serializ-
ability.

Answer:

a. The same system as in the answer to Exercise 19.14 is assumed,
except that now both the global transactions are read-only. Consider
the schedule given below.

T1 T2 TG 1 TG2

read(X 1)
write(X 1)

read(X 1)

read(X 2)

write(X 2)

read(X 2)

Though there is local serializability in both sites, the global schedule
is not serializable.

b. Since local serializability is guaranteed, any cycle in the system wide
precedence graph must involve at least two different sites, and two
different global transactions. The ticket scheme ensures that when-
ever two global transactions access data at a site, they conflict on
a data item (the ticket) at that site. The global transaction manager
controls ticket access in such a manner that the global transactions
execute with the same serializability order in all the sites. Thus the
chance of their participating in a cycle in the system wide precedence
graph is eliminated.

21
PARALLEL AND DISTRIBUTED

DATABASES

Exercise 21.1 Give brief answers to the following questions:

1. What are the similarities and differences between parallel and distributed database man-

agement systems?

2. Would you expect to see a parallel database built using a wide-area network? Would

you expect to see a distributed database built using a wide-area network? Explain.

3. Define the terms scale-up and speed-up.

4. Why is a shared-nothing architecture attractive for parallel database systems?

5. The idea of building specialized hardware to run parallel database applications received

considerable attention but has fallen out of favor. Comment on this trend.

6. What are the advantages of a distributed database management system over a centralized

DBMS?

7. Briefly describe and compare the Client-Server and Collaborating Servers architectures.

8. In the Collaborating Servers architecture, when a transaction is submitted to the DBMS,

briefly describe how its activities at various sites are coordinated. In particular, describe

the role of transaction managers at the different sites, the concept of subtransactions,

and the concept of distributed transaction atomicity.

Answer 21.1 1. Parallel and distributed database management systems are similar in

form, yet differ in function. The form of both types of DBMS must include direct access

to both multiple storage devices and multiple processors. Note the stringency of the

direct access provision. Not only does the physical architecture need to include multiple

storage units and processors, but the operating system must allow the the parallel or

distributed DBMS to store or process data using a particular disk or processor. An

operating system that internally manages multiplicity and presents a single disk, single

processor platform could not support a parallel or distributed DBMS.

Both types of DBMS directly manipulate multiple storage devices and both have the

capacity to perform operations in a non-sequential fashion, but each does so for a different

functional purpose. A DBMS is made parallel primarily to improve performance by

allowing non-interdependent operations to execute simultaneously. The data locations

are chosen to optimize input/output requests from the processors. A DBMS is made

190

Parallel and Distributed Databases 191

distributed primarily to store the data in a particular location which then determines

the choice of processor. Multiple locations serve as a safety net should one site fail, and

provide quicker access to local data for geographically large organizations.

2. No, it would be unlikely to find a parallel database system built using a wide-area

network. Any performance gains from executing operations simultaneously would surely

be lost by excessive transportation costs.

Yes, a distributed database is likely to be built using a wide-area network. Multiple

copies of the data may be stored at geographically distant locations to optimize local

data requests and enhance availability in the event one site fails.

3. Speed-up is defined as the proportional decrease in processing time due to an increase in

number of disks or processors, with the amount of data held constant. In other words,

for a fixed amount of data, speed-up measures how much the speed increases due to

additional processors or disks.

Scale-up is defined as the proportional increase in data processing ability due to an

increase in the number of disks or processors, with the processing time held constant.

In other words, in a fixed amount of time, scale-up measures the data capacity increase

due to additional processors or disks.

4. The shared-nothing architecture is attractive because it allows for linear scale-up and

speed-up for an arbitrary number of processors. In contrast, the shared-memory archi-

tecture can only provide these performance gains for a fixed number of processors. After

a certain point, memory contention degrades performance and the gains from the shared

memory approach are significantly less than those from shared-nothing alternative.

5. The production of specialized hardware requires a large capital investment which in turn

requires a large market for success. While the market for database products is huge,

the sub-segment of customers willing to pay a premium for parallel performance gains

is smaller. Moreover, this sub-segment already has access to high-performance at a

lower cost with stock hardware. Recall that using standard CPUs and interconnects in

a shared nothing architecture allows for linear speed-up and scale-up. Since specialized

hardware cannot provide better performance per cost, nor can it keep pace with the

rapid development of stock hardware, there is a subsequent lack of development interest.

6. A distributed database system is superior to its centralized counterpart for several rea-

sons. First, data may be replicated at multiple locations which provides increased reli-

ability in the event that one site fails. Second, if the organization served by the DBMS

is geographically diverse and access patterns are localized, storing the data locally will

greatly reduce transportation costs thus improving performance. Finally, distributing

data in a large organization allows for greater local autonomy so that issues of only local

concern may be handled locally. A centralized database would need to coordinate too

many details, e.g. ensuring no conflicts everytime someone chooses a name for a database

object.

7. The client-server architecture draws a sharp distinction between the user and the data

storage. The client side contains a front end for the purpose of generating queries

to be sent to the server, which processes the query and responds with the data. A

collaborating-servers architecture differs in that there is a collection of servers capable

of processing queries. In addition, if data is needed from multiple servers, each unit is

capable of decomposing a large query into smaller queries, and sending them to the ap-

192 Chapter 21

propriate location. Thus in the collaborating-server architecture, servers not only store

data and process queries, but they may also act as users of other servers.

8. A transaction submitted to a collaborating-server architecture is first evaluated to de-

termine where the data is located and what optimized sub-queries will retrieve it most

efficiently. The primary server, the recipient of the initial query, then begins a transac-

tion and starts acquiring the necessary locks. The primary transaction manager acquires

local locks in the normal fashion and issues subtransaction requests to the remote servers.

The remote servers set about acquiring the necessary locks for the locally optimized plan

and communicate back to the primary transaction manager.

Once the primary transaction manager hears positive results from every remote trans-

action manager: the recovery data is stored in a safe place, the transaction commits,

and executes it its entirety. If at least one remote transaction manager replies with an

abort message or fails to respond at all, the primary transaction manager aborts the

entire transaction. Distributed transaction atomicity is then guaranteed in that either

the entire transaction executes everywhere or none of it executes anywhere.

Exercise 21.2 Give brief answers to the following questions:

1. Define the terms fragmentation and replication, in terms of where data is stored.

2. What is the difference between synchronous and asynchronous replication?

3. Define the term distributed data independence. Specifically, what does this mean with

respect to querying and with respect to updating data in the presence of data fragmen-

tation and replication?

4. Consider the voting and read-one write-all techniques for implementing synchronous

replication. What are their respective pros and cons?

5. Give an overview of how asynchronous replication can be implemented. In particular,

explain the terms capture and apply.

6. What is the difference between log-based and procedural approaches to implementing

capture?

7. Why is giving database objects unique names more complicated in a distributed DBMS?

8. Describe a catalog organization that permits any replica (of an entire relation or a frag-

ment) to be given a unique name and that provides the naming infrastructure required

for ensuring distributed data independence.

9. If information from remote catalogs is cached at other sites, what happens if the cached

information becomes outdated? How can this condition be detected and resolved?

Answer 21.2 Answer omitted.

Exercise 21.3 Consider a parallel DBMS in which each relation is stored by horizontally

partitioning its tuples across all disks.

Employees(eid: integer, did: integer, sal: real)

Departments(did: integer, mgrid: integer, budget: integer)

Parallel and Distributed Databases 193

The mgrid field of Departments is the eid of the manager. Each relation contains 20-byte

tuples, and the sal and budget fields both contain uniformly distributed values in the range

0 to 1,000,000. The Employees relation contains 100,000 pages, the Departments relation

contains 5,000 pages, and each processor has 100 buffer pages of 4,000 bytes each. The cost of

one page I/O is td, and the cost of shipping one page is ts; tuples are shipped in units of one

page by waiting for a page to be filled before sending a message from processor i to processor

j. There are no indexes, and all joins that are local to a processor are carried out using

a sort-merge join. Assume that the relations are initially partitioned using a round-robin

algorithm and that there are 10 processors.

For each of the following queries, describe the evaluation plan briefly and give its cost in terms

of td and ts. You should compute the total cost across all sites as well as the ‘elapsed time’

cost (i.e., if several operations are carried out concurrently, the time taken is the maximum

over these operations).

1. Find the highest paid employee.

2. Find the highest paid employee in the department with did 55.

3. Find the highest paid employee over all departments with budget less than 100,000.

4. Find the highest paid employee over all departments with budget less than 300,000.

5. Find the average salary over all departments with budget less than 300,000.

6. Find the salaries of all managers.

7. Find the salaries of all managers who manage a department with a budget less than

300,000 and earn more than 100,000.

8. Print the eids of all employees, ordered by increasing salaries. Each processor is connected

to a separate printer, and the answer can appear as several sorted lists, each printed by

a different processor, as long as we can obtain a fully sorted list by concatenating the

printed lists (in some order).

Answer 21.3 The round-robin partitioning implies that every tuple has a equal probability

of residing at each processor. Moreover, since the sal field of Employees and budget field of

Departments are uniformly distributed on 0 to 1,000,000, each processor must also have a

uniform distribution on this range. Also note that processing a partial page incurs the same

cost as processing an entire page and the cost of writing out the result is uniformly ignored.

Finally, recall that elapsed time is the maximum time taken for any one processor to complete

its task.

1. Find the highest paid employee.

Plan: Conduct a complete linear scan of the Employees relation at each processor re-

taining only the tuple with the highest value in sal field. All processors except one then

send their result to a chosen processor which selects the tuple with the highest value of

sal.

Total Cost = (# CPUs) ∗ (Emp pg /CPU) ∗ (I/O cost)

+ (# CPUs − 1) ∗ (send cost)

194 Chapter 21

= (10 ∗ 10, 000 ∗ td) + (9 ∗ ts)

= 100, 000 ∗ td + 9 ∗ ts

Elapsed T ime = 10, 000 ∗ td + ts

2. Find the highest paid employee in the department with did 55.

Plan: Conduct a complete linear scan of the Employees relation at each processor re-

taining only the tuple with the highest value in sal field and a did field equal to 55. All

processors except one then send their result to a chosen processor which selects the tuple

with the highest value of sal.

Total Cost: The answer is the same as for part 1 above. Even if no qualifying tuples

are found at a given processor, a page should still be sent from nine processors to a

chosen tenth. The page will either contain a real tuple or if a processor fails to find any

tuple with did equal to 55, a generated tuple with sal equal to -1 will suffice. Note that

the chosen processor must also account for the case where no tuple qualifies, simply by

ignoring any tuple with sal equal to -1 in its final selection.

Elapsed Time: The elapsed time is also the same as for part 1 above.

3. Find the highest paid employee over all departments with budget less than 100,000.

Plan: First, conduct a complete linear scan of the Departments relation at each processor

retaining only the did fields from tuples with budget less than 100,000. Recall that

Departments is uniformly distributed on the budget field from 0 to 1,000,000, thus each

processor will retain only 10% of its 500 Departments pages. Since the did field is 1/3

of a Departments tuple, the scan will result in approximately 16.7 pages which rounds

up to 17.

Second, each processor sends its 17 pages of retained did field tuples to every other pro-

cessor which subsequently stores them. 10 processors send 17 pages to 9 other processors

for a total of 1,530 sends. After sending, each processor has 170 (partially filled) pages

of Departments tuples.

Third, each processor joins the did field tuples with the Employees relation retaining

only the joined tuple with the highest value in the sal field. Let M = 170 represent the

number of Departments pages and N = 10, 000 represent the number of Employees pages

at each processor. Since the number of buffer pages, 100 ≥ √
N , the refined Sort-Merge

may be used for a join cost of 30,510 at each processor.

Fourth, all processors except one then send their result to a chosen processor which

selects the tuple with the highest value of sal.

Total Cost = scan Dept for tuples with budget < 100, 000

+ sending did field tuples from 10 processors to 9 others

+ storing did field tuples at each processor

+ joining with Emp and selecting max(sal) tuple

+ sending local results to the chosen processor

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

Parallel and Distributed Databases 195

10 ∗ 500 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 did pgs) ∗ ts

10 ∗ 9 ∗ 17 ∗ ts

1, 530 ∗ ts

+ (# CPU storing) ∗ (170 did pgs) ∗ (I/O cost)

10 ∗ 170 ∗ td

1, 700 ∗ td

+ (# CPU joining) ∗ (join cost)

10 ∗ (3 ∗ (170 + 10, 000) ∗ td)

10 ∗ 30, 510 ∗ td

305, 100 ∗ td

+ (# CPUs − 1) ∗ (send cost)

9 ∗ ts

= 5, 000 ∗ td + 1, 530 ∗ ts + 1, 700 ∗ td + 305, 100 ∗ td + 9 ∗ ts

= 311, 800 ∗ td + 1, 539 ∗ ts

Elapsed T ime = 500 ∗ td + 153 ∗ ts + 170 ∗ td + 30, 510 ∗ td + ts

= 31, 180 ∗ td + 154 ∗ ts

4. Find the highest paid employee over all departments with budget less than 300,000.

Plan: The evaluation of this query is identical to that in part 3 except that the probability

of a Departments tuple’s budget field being selected in step one is multiplied by three.

There are then 50 pages retained by each processor and sent to every other processor for

joins and maximum selection.

Total Cost = scan Dept for tuples with budget < 300, 000

+ sending did field tuples from 10 processors to 9 others

+ storing did field tuples at each processor

+ joining with Emp and selecting max(sal) tuple

+ sending local results to the chosen processor

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

10 ∗ 500 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (50 did pgs) ∗ ts

10 ∗ 9 ∗ 50 ∗ ts

4, 500 ∗ ts

+ (# CPU storing) ∗ (500 did pgs) ∗ (I/O cost)

10 ∗ 500 ∗ td

196 Chapter 21

5, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

10 ∗ (3 ∗ (500 + 10, 000) ∗ td)

10 ∗ 31, 500 ∗ td

315, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

9 ∗ ts

= 5, 000 ∗ td + 4, 500 ∗ ts + 5, 000 ∗ td + 315, 000 ∗ td + 9 ∗ ts

= 325, 000 ∗ td + 4, 509 ∗ ts

Elapsed T ime = 500 ∗ td + 450 ∗ ts + 500 ∗ td + 31, 500 ∗ td + ts

= 32, 500 ∗ td + 451 ∗ ts

5. Find the average salary over all departments with budget less than 300,000.

Plan: The first two steps in evaluating this query are identical to part 4. Steps three

and four differ in that the desired result is an average instead of a maximum.

First, each processor conducts a complete linear scan of the Departments relation re-

taining only the did field from tuples with a budget field less than 300,000. Second, each

processor sends its result pages to every other processor. Third, each processor joins

the did field tuples with the Employees relation and retains a running sum and count

of the sal field. Fourth, each processor except one sends its sum and count to a chosen

processor which divides the total sum by the total count to obtain the average. The cost

is identical to part 4 above.

6. Find the salaries of all managers.

Plan: First, conduct a complete linear scan of the Departments relation at each processor

retaining only the mgrid field for all tuples. Since the mgrid field is 1/3 of each tuple,

there will be 167 (rounded up) resulting pages. Second, each processor sends its result

pages to every other processor which subsequently stores them. Third, each processor

joins the mgrid field tuples with Employees thus obtaining the salaries of all managers.

Total Cost = scan Dept for mgrid fields

+ sending mgrid field tuples from 10 processors to 9 others

+ storing mgrid field tuples at each processor

+ joining with Emp

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

10 ∗ 500 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (167 mgrid pgs) ∗ ts

10 ∗ 9 ∗ 167 ∗ ts

15, 030 ∗ ts

+ (# CPU storing) ∗ (1, 670 mgrid pgs) ∗ (I/O cost)

Parallel and Distributed Databases 197

10 ∗ 1, 670 ∗ td

16, 700 ∗ td

+ (# CPU joining) ∗ (join cost)

10 ∗ (3 ∗ (1, 670 + 10, 000) ∗ td)

10 ∗ 35, 010 ∗ td

350, 100 ∗ td

= 5, 000 ∗ td + 15, 030 ∗ ts + 16, 700 ∗ td + 350, 100 ∗ td

= 386, 830 ∗ td + 15, 030 ∗ ts

Elapsed T ime = 500 ∗ td + 1, 503 ∗ ts + 1, 670 ∗ td + 35, 010 ∗ td

= 38, 683 ∗ td + 1, 503 ∗ ts

7. Find the salaries of all managers who manage a department with a budget less than

300,000 and earn more than 100,000.

Plan: The evaluation of this query is similar to that of part 6. The additional selection

condition on the budget field is applied in step one and serves to reduce the number of

pages sent and joined in steps two and three. The additional selection condition on the

sal field is applied during the join in step three and has no effect on the final cost.

First, conduct a complete linear scan of the Departments relation at each processor

retaining only the mgrid field for all tuples. Since the mgrid field is 1/3 of each tuple

and there are 150 qualifying Departments pages at each processor, there will be 50

resulting pages. Second, each processor sends its result pages to every other processor

which subsequently stores them. Third, each processor joins the mgrid field tuples with

Employees thus obtaining the salaries of all managers.

Total Cost = scan Dept for mgrid fields

+ sending mgrid field tuples from 10 processors to 9 others

+ storing mgrid field tuples at each processor

+ joining with Emp

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

10 ∗ 500 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (50 mgrid pgs) ∗ ts

10 ∗ 9 ∗ 50 ∗ ts

4, 500 ∗ ts

+ (# CPU storing) ∗ (500 mgrid pgs) ∗ (I/O cost)

10 ∗ 500 ∗ td

5, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

10 ∗ (3 ∗ (500 + 10, 000) ∗ td)

198 Chapter 21

10 ∗ 31, 500 ∗ td

315, 000 ∗ td

= 5, 000 ∗ td + 4, 500 ∗ ts + 5, 000 ∗ td + 315, 000 ∗ td

= 325, 000 ∗ ts + 4, 500 ∗ ts

Elapsed T ime = 500 ∗ td + 450 ∗ ts + 500 ∗ td + 31, 500 ∗ td

= 32, 500 ∗ td + 450 ∗ ts

8. Print the eids of all employees, ordered by increasing salaries. Each processor is connected

to a separate printer, and it is acceptable to have the answer in the form of several sorted

lists, each printed by a different processor, as long as we can obtain a fully sorted list by

concatenating the printed lists (in some order).

Plan: At each processor, sort the Employees relation by the sal field and print the result.

Note that the refined Sort-Merge join may be applied without the on-the-fly merge to

sort at a cost of 3 ∗ M ∗ td.

Total Cost = (# CPU sorting) ∗ (sort cost)

= 10 ∗ (3 ∗ 10, 000 ∗ td)

= 300, 000 ∗ td

Elapsed T ime = 30, 000 ∗ td

Exercise 21.4 Consider the same scenario as in Exercise 21.3, except that the relations are

originally partitioned using range partitioning on the sal and budget fields.

Answer 21.4 Answer omitted.

Exercise 21.5 Repeat Exercises 21.3 and 21.4 with the number of processors equal to (i) 1

and (ii) 100.

Answer 21.5 Repeat of Exercise 21.3

Recall that the round-robin distribution algorithm implies that the tuples are uniformly dis-

tributed across processors. Moreover, since the Employees and Departments relations sal

and budget fields are uniformly distributed on 0 to 1,000,000, each processor must also have

a uniform distribution on this range. Since elapsed time figures are redundant for the one

processor case they are omitted. Also, assume for simplicity that the single processor has

enough buffer pages for the Sort-Merge join algorithm, i.e., 317. Finally, for the 100 processor

case, the plans are nearly identical to Exercise 20.3 and thus are also omitted.

(i) Assuming there is only 1 processor

(ii) Assuming there are 100 processors

Parallel and Distributed Databases 199

1. Find the highest paid employee

(i) Plan: Conduct a complete linear scan of all Employees tuples retaining only the one

with the highest sal value.

Cost = (# Emp pgs) ∗ (I/O cost) = 100, 000 ∗ td

(ii)

Total Cost = (# CPUs) ∗ (Emp pgs/CPU) ∗ (I/O cost)

+ (# CPUs − 1) ∗ (send cost)

= (100 ∗ 1, 000 ∗ td) + (99 ∗ ts)

= 100, 000 ∗ td + 99 ∗ ts

Elapsed T ime = 1, 000 ∗ td + ts

2. Find the highest paid employee in the department with did 55.

(i) Plan: Conduct a complete linear scan of all Employees tuples retaining only the one

with the highest sal value and did field equal to 55.

Cost = (# Emp pgs) ∗ (I/O cost)

= 100, 000 ∗ td

(ii) Total and elapsed costs are identical to part 1 above.

3. Find the highest paid employee over all departments with budget less than 100,000.

(i) Plan: join the Employees and Departments relations retaining only the one with the

highest salary and budget less than 100,000.

Cost = 3 ∗ (# Dept pgs + # Emp pgs) ∗ (I/O cost)

= 3 ∗ (100, 000 + 5, 000) ∗ td

= 315, 000 ∗ td

(ii)

Total Cost = scan Dept for tuples with budget < 100, 000

+ sending did pgs from 100 processors to 99 others

+ storing did pgs at each processor

+ joining with Emp and selecting max(sal) tuple

+ sending local results to the chosen processor

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

100 ∗ 50 ∗ td

5, 000 ∗ td

200 Chapter 21

+ (# CPU sending) ∗ (# CPU receiving) ∗ (2 did pgs) ∗ ts

100 ∗ 99 ∗ 2 ∗ ts

19, 800 ∗ ts

+ (# CPU storing) ∗ (200 did pgs) ∗ (I/O cost)

100 ∗ 200 ∗ td

20, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (200 + 1, 000) ∗ td)

100 ∗ 3, 600 ∗ td

360, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

99 ∗ ts

= 5, 000 ∗ td + 19, 800 ∗ ts + 20, 000 ∗ td + 360, 000 ∗ td + 99 ∗ ts

= 385, 000 ∗ td + 19, 899 ∗ ts

Elapsed T ime = 50 ∗ td + 198 ∗ ts + 200 ∗ td + 3, 600 ∗ td + ts

= 3, 850 ∗ td + 199 ∗ ts

4. Find the highest paid employee over all departments with a budget less than 300,000.

(i) Plan: join the Employees and Departments relations retaining only the one with the

highest salary and budget less than 300,000.

Cost = 3 ∗ (# Dept pgs + # Emp pgs) ∗ (I/O cost)

= 3 ∗ (100, 000 + 5, 000) ∗ td

= 315, 000 ∗ td

(ii)

Total Cost = scan Dept for tuples with budget < 300, 000

+ sending did field pgs from 100 processors to 99 others

+ storing did field pgs at each processor

+ joining with Emp and selecting max(sal) tuple

+ sending local results to the chosen processor

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

100 ∗ 50 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (5 did pgs) ∗ ts

100 ∗ 99 ∗ 5 ∗ ts

49, 500 ∗ ts

+ (# CPU storing) ∗ (500 did pgs) ∗ (I/O cost)

Parallel and Distributed Databases 201

100 ∗ 500 ∗ td

50, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (500 + 1, 000) ∗ td)

10 ∗ 4, 500 ∗ td

450, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

99 ∗ ts

= 5, 000 ∗ td + 49, 500 ∗ ts + 50, 000 ∗ td + 450, 000 ∗ td + 99 ∗ ts

= 495, 000 ∗ td + 49, 599 ∗ ts

Elapsed T ime = 50 ∗ td + 495 ∗ ts + 500 ∗ td + 4, 500 ∗ td + ts

= 4, 950 ∗ td + 496 ∗ ts

5. Find the average salary over all departments with budget less than 300,000.

(i) Plan: join the Employees and Departments relations retaining a running sum and

count of the sal field for join tuples with a budget field less than 300,000. Divide the sum

by the count to obtain the average.

Cost = 3 ∗ (# Dept pgs + # Emp pgs) ∗ (I/O cost)

= 3 ∗ (100, 000 + 5, 000) ∗ td

= 315, 000 ∗ td

(ii) The cost is identical to part 4 above.

6. Find the salaries of all managers.

(i) Plan: join the Employees and Departments relations at each processor retaining only

those join tuples with eid equal to mgrid.

Cost = 3 ∗ (# Dept pgs + # Emp pgs) ∗ (I/O cost)

= 3 ∗ (100, 000 + 5, 000) ∗ td

= 315, 000 ∗ td

(ii)

Total Cost = scan Dept for mgrid fields

+ sending mgrid pgs from 100 processors to 99 others

+ storing mgrid pgs at each processor

+ joining with Emp

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

100 ∗ 50 ∗ td

202 Chapter 21

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 mgrid pgs) ∗ ts

100 ∗ 99 ∗ 17 ∗ ts

168, 300 ∗ ts

+ (# CPU storing) ∗ (170 mgrid pgs) ∗ (I/O cost)

100 ∗ 170 ∗ td

17, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (1, 700 + 1, 000)td)

100 ∗ 8, 100 ∗ td

810, 000 ∗ td

= 5, 000 ∗ td + 168, 300 ∗ ts + 17, 000 ∗ td + 810, 000 ∗ td

= 832, 000 ∗ td + 168, 300 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 683 ∗ ts + 170 ∗ td + 8, 100 ∗ td

= 8, 320 ∗ td + 1, 683 ∗ ts

7. Find the salaries of all managers who manage a department with a budget less than

300,000 and earn more than 100,000.

(i) Plan: join the Employees and Department relations retaining only those joined tuples

with budget < 300,000 and sal > 100,000.

Cost = 3 ∗ (# Dept pages + # Emp pages) ∗ (I/O cost)

= 3 ∗ (100, 000 + 5, 000) ∗ td

= 315, 000 ∗ td

(ii)

Total Cost = scan Dept for mgrid fields

+ sending mgrid pgs from 100 processors to 99 others

+ storing mgrid pgs at each processor

+ joining with Emp

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

100 ∗ 50 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (5 mgrid pgs) ∗ ts

100 ∗ 99 ∗ 5 ∗ ts

49, 500 ∗ ts

+ (# CPU storing) ∗ (500 mgrid pgs) ∗ (I/O cost)

100 ∗ 500 ∗ td

Parallel and Distributed Databases 203

50, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (500 + 1, 000)td)

100 ∗ 4, 500 ∗ td

450, 000 ∗ td

= 5, 000 ∗ td + 49, 500 ∗ ts + 50, 000 ∗ td + 450, 000 ∗ td

= 505, 000 ∗ ts + 49, 500 ∗ ts

Elapsed T ime = 50 ∗ td + 495 ∗ ts + 500 ∗ td + 4, 500 ∗ td

= 5, 050 ∗ td + 495 ∗ ts

8. Print the eids of all employees, ordered by increasing salaries.

(i) Plan: sort the Employees relation using salary as a key and print the result.

Cost = (100, 000) ∗ (sortcost)

= 300, 000 ∗ td

(ii)

Total Cost = (# CPU sorting) ∗ (sort cost)

= 100 ∗ (3 ∗ 1, 000 ∗ td)

= 300, 000 ∗ td

Elapsed T ime = 3, 000 ∗ td

Repeat of Exercise 21.4:

Recall that in Exercise 21.3 the range partitioning places tuples with either a sal or budget

field between 0 and 10,000 at processor 1, between 10,001 and 20,000 at the processor 2, etc.

The uniform distribution of values in sal and budget implies that there are equal numbers of

tuples at each processor. Assuming 100 processors, there are 1,000 Employee tuples and 50

department tuples at each processor. Assuming there is only one processor implies partitioning

is meaningless, thus the answers for part (i) are identical to those from part(i) directly above

and are omitted.

The answers below assume that there are 100 processors.

1. Find the highest paid employee.

Plan: The tuple with the highest sal value is located at processor 100. Conduct a

complete linear scan of the Employees relation there retaining the tuple with the highest

value in the sal field.

204 Chapter 21

Total Cost = (# of Emp pgs at CPU 100) ∗ (I/O cost)

= 1, 000 ∗ td

Elapsed T ime = 1, 000 ∗ td

2. Find the highest paid employee in the department with did 55.

Plan: Since there is no guarantee that such a tuple might exist at any given processor,

conduct a complete linear scan of all Employees tuples at each processor retaining the

one with the highest sal value and did 55. Each processor except one should then send

their result to a chosen processor which selects the tuple with the highest value in the

sal field.

Total Cost = (# CPU scanning) ∗ (# of Emp pgs/CPU) ∗ (I/O cost)

+ (#CPUs − 1) ∗ (sendcost)

= 100 ∗ 1, 000 ∗ td

+ 99 ∗ ts

= 100, 000 ∗ td + 99 ∗ ts

Elapsed T ime = 1, 000 ∗ td + ts

3. Find the highest paid employee over all departments with budget less than 100,000.

Plan: Department tuples with a budget field less than 100,000 must be located at pro-

cessors 1 through 10. The highest paid employees are located at the higher numbered

processors, however; as in the 2. above, there is no guarantee that any processor has

an Employees tuple with a particular did field value. So, processors 1 through 10 must

conduct a complete linear scan of Departments retaining only the did field. The results

are then sent to all processors which store and join them with the Employees relation

retaining only the join tuple with the highest sal value. Finally, each processor except

one sends the result to a chosen processor which selects the Employees tuple with the

highest sal value.

Total Cost = scan Dept for did fields at first ten CPUs

+ sending did pgs from 10 CPUs to 99 CPUs

+ storing did pgs at each processor

+ joining did with Emp

+ sending local results to chosen processor

= (# CPUs w/budget < 100, 000) ∗ (# Dept pgs) ∗ (I/Ocost)

(10 CPUs) ∗ (50 pgs/CPU) ∗ td

10 ∗ 50 ∗ td

500 ∗ td

Parallel and Distributed Databases 205

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 did pgs) ∗ ts

10 ∗ 99 ∗ 17 ∗ ts

10 ∗ 1, 683 ∗ ts

16, 830 ∗ ts

+ (# CPU storing) ∗ (170 did pgs) ∗ (I/O cost)

100 ∗ 170 ∗ td

17, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (170 ∗ 1, 000) ∗ td)

351, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

99 ∗ ts

= 500 ∗ td + 16, 830 ∗ ts + 17, 000 ∗ td + 351, 000 ∗ td + 99 ∗ ts

= 368, 500 ∗ td + 16, 929 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 683 ∗ ts + 170 ∗ td + 3, 510 ∗ td + ts

= 3, 730 ∗ td + 1, 684 ∗ ts

4. Find the highest paid employee over all departments with a budget less than 300,000.

Plan: The plan is identical to that for part 3 above except that now the first 30 processors

must create relations of did fields and send them to all other processors.

Total Cost = scan Dept for did fields at first thirty CPUs

+ sending did field pgs from 30 CPUs to 99 CPUs

+ storing did field pgs at each processor

+ joining did field tuples with Emp tuples

+ sending local results to chosen processor

= (# CPUs w/budget < 300, 000) ∗ (# Dept pgs) ∗ (I/O cost)

(30 CPUs) ∗ (50 pgs/CPU) ∗ td

30 ∗ 50 ∗ td

1, 500 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 did pgs) ∗ ts

30 ∗ 99 ∗ 17 ∗ ts

30 ∗ 1, 683 ∗ ts

50, 490 ∗ ts

+ (# CPU storing) ∗ (51 did field pgs) ∗ (I/O cost)

100 ∗ 51 ∗ td

5, 100 ∗ td

+ (# CPU joining) ∗ (join cost)

206 Chapter 21

100 ∗ (3 ∗ (170 ∗ 1, 000) ∗ td)

351, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

99 ∗ ts

= 1, 500 ∗ td + 50, 490 ∗ ts + 5, 100 ∗ td + 351, 000 ∗ td + 99 ∗ ts

= 357, 600 ∗ td + 50, 589 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 683 ∗ ts + 51 ∗ td + 3, 510 ∗ td + ts

= 3, 611 ∗ td + 1, 684 ∗ ts

5. Find the average salary over all departments with budget less than 300,000.

Plan: This query is similar to part 4 above. The difference is that instead of selecting

the highest salary during the join and reporting to a chosen processor, each processor

retains a running sum of the sal field and count of joined tuples. The chosen processor

then computes the total sum and divides by the total count to obtain the average. Note

that the costs are identical to part 4.

6. Find the salaries of all managers.

Plan: Employees tuples with an eid field equal to a mgrid field of a Departments relation

may be stored anywhere. Each processor should conduct a complete linear scan of its

Departments tuples retaining only the mgrid field. Then, each processor sends the result

to all others who subsequently store the mgrid relation. Next, each processor joins the

mgrid relation with Employees retaining only the sal field of joined tuples.

Total Cost = scan Dept for mgrid fields at all CPUs

+ sending mgrid field tuples from 100 CPUs to 99 CPUs

+ storing mgrid field tuples at each processor

+ joining mgrid field tuples with Emp tuples

+ sending local results to chosen processor

= (# CPUs scanning) ∗ (# Dept pgs) ∗ (I/O cost)

100 ∗ 50 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 did pgs) ∗ ts

100 ∗ 99 ∗ 17 ∗ ts

100 ∗ 1, 683 ∗ ts

168, 300 ∗ ts

+ (# CPU storing) ∗ (1, 700 did field pgs) ∗ (I/O cost)

100 ∗ 1, 700 ∗ td

170, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (1, 700 ∗ 1, 000) ∗ td)

Parallel and Distributed Databases 207

810, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

99 ∗ ts

= 5, 000 ∗ td + 168, 300 ∗ ts + 170, 000 ∗ td + 810, 000 ∗ td + 99 ∗ ts

= 985, 000 ∗ td + 168, 399 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 683 ∗ ts + 1, 700 ∗ td + 8, 100 ∗ td + ts

= 9, 850 ∗ td + 1, 684 ∗ ts

7. Find the salaries of all managers who manage a department with a budget less than

300,000 and earn more than 100,000.

Plan: Department tuples with a budget less than 300,000 are located at processors

1 through 30. Employees tuples with a sal fields greater than 100,000 are located at

processors 11 through 100. Conduct a complete linear scan of all Department tuples

retaining only the mgrid field of tuples with a budget field less than 300,000. Send the

new mgrid relation to processors 11 through 100. Next, processors 11 through 100 join

the new mgrid relation with Employees to obtain the desired result. Finally, the answer

is forwarded (costlessly) to the chosen output device.

Total Cost = scan Dept for mgrid fields at first thirty CPUs

+ sending mgrid field tuples from 10 CPUs to 90 CPUs

+ sending mgrid field tuples from 20 CPUs to 89 CPUs

+ storing mgrid field tuples at 90 CPUs

+ joining mgrid field tuples with Emp tuples in 90 CPUs

= (# CPUs scanning) ∗ (# Dept pgs/CPU) ∗ (I/O cost)

30 ∗ 50 ∗ td

1, 500 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 mgrid pgs) ∗ ts

10 ∗ 90 ∗ 17 ∗ ts

10 ∗ 1, 530 ∗ ts

15, 300 ∗ ts

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 mgrid pgs) ∗ ts

20 ∗ 89 ∗ 17 ∗ ts

20 ∗ 1, 513 ∗ ts

30, 260 ∗ ts

+ (# CPU storing) ∗ (51 mgrid field pgs) ∗ (I/O cost)

90 ∗ 51 ∗ td

4, 590 ∗ td

+ (# CPU joining) ∗ (join cost)

90 ∗ (3 ∗ (510 + 1, 000) ∗ td)

208 Chapter 21

90 ∗ 4, 530 ∗ td

407, 700 ∗ td

= 1, 500 ∗ td + 15, 300 ∗ ts + 30, 260 ∗ ts + 4, 590 ∗ td + 407, 700 ∗ td

= 413, 790 ∗ td + 45, 560 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 530 ∗ ts + 1, 513 ∗ ts + 51 ∗ td + 4, 530 ∗ td

= 4, 631 ∗ td + 3, 043 ∗ ts

8. Print the eids of all employees, ordered by increasing salaries.

Plan: Sort the Employees relation at each processor and print it out.

Total Cost = (# CPUsorting) ∗ (sort cost)

= 100 ∗ (3 ∗ 1, 000 ∗ td)

= 300, 000 ∗ td

Elapsed T ime = 1, 000 pgs ∗ (sort cost)

Exercise 21.6 Consider the Employees and Departments relations described in Exercise

21.3. They are now stored in a distributed DBMS with all of Employees stored at Naples

and all of Departments stored at Berlin. There are no indexes on these relations. The cost of

various operations is as described in Exercise 21.3. Consider the query:

SELECT *

FROM Employees E, Departments D

WHERE E.eid = D.mgrid

The query is posed at Delhi, and you are told that only 1 percent of employees are managers.

Find the cost of answering this query using each of the following plans:

1. Compute the query at Naples by shipping Departments to Naples; then ship the result

to Delhi.

2. Compute the query at Berlin by shipping Employees to Berlin; then ship the result to

Delhi.

3. Compute the query at Delhi by shipping both relations to Delhi.

4. Compute the query at Naples using Bloomjoin; then ship the result to Delhi.

5. Compute the query at Berlin using Bloomjoin; then ship the result to Delhi.

6. Compute the query at Naples using Semijoin; then ship the result to Delhi.

7. Compute the query at Berlin using Semijoin; then ship the result to Delhi.

Answer 21.6 Answer omitted.

Parallel and Distributed Databases 209

Exercise 21.7 Consider your answers in Exercise 21.6. Which plan minimizes shipping

costs? Is it necessarily the cheapest plan? Which do you expect to be the cheapest?

Answer 21.7 Answer not available.

Exercise 21.8 Consider the Employees and Departments relations described in Exercise

21.3. They are now stored in a distributed DBMS with 10 sites. The Departments tuples are

horizontally partitioned across the 10 sites by did, with the same number of tuples assigned

to each site and with no particular order to how tuples are assigned to sites. The Employees

tuples are similarly partitioned, by sal ranges, with sal ≤ 100, 000 assigned to the first site,

100, 000 < sal ≤ 200, 000 assigned to the second site, and so on. In addition, the partition

sal ≤ 100, 000 is frequently accessed and infrequently updated, and it is therefore replicated

at every site. No other Employees partition is replicated.

1. Describe the best plan (unless a plan is specified) and give its cost:

(a) Compute the natural join of Employees and Departments using the strategy of

shipping all fragments of the smaller relation to every site containing tuples of the

larger relation.

(b) Find the highest paid employee.

(c) Find the highest paid employee with salary less than 100, 000.

(d) Find the highest paid employee with salary greater than 400, 000 and less than

500, 000.

(e) Find the highest paid employee with salary greater than 450, 000 and less than

550, 000.

(f) Find the highest paid manager for those departments stored at the query site.

(g) Find the highest paid manager.

2. Assuming the same data distribution, describe the sites visited and the locks obtained

for the following update transactions, assuming that synchronous replication is used for

the replication of Employees tuples with sal ≤ 100, 000:

(a) Give employees with salary less than 100, 000 a 10 percent raise, with a maximum

salary of 100, 000 (i.e., the raise cannot increase the salary to more than 100, 000).

(b) Give all employees a 10 percent raise. The conditions of the original partitioning

of Employees must still be satisfied after the update.

3. Assuming the same data distribution, describe the sites visited and the locks obtained

for the following update transactions, assuming that asynchronous replication is used for

the replication of Employees tuples with sal ≤ 100, 000.

(a) For all employees with salary less than 100, 000 give them a 10 percent raise, with

a maximum salary of 100, 000.

(b) Give all employees a 10 percent raise. After the update is completed, the conditions

of the original partitioning of Employees must still be satisfied.

Answer 21.8 Answer omitted.

210 Chapter 21

Exercise 21.9 Consider the Employees and Departments relations from Exercise 21.3. You

are a DBA dealing with a distributed DBMS, and you need to decide how to distribute these

two relations across two sites, Manila and Nairobi. Your DBMS supports only unclustered

B+ tree indexes. You have a choice between synchronous and asynchronous replication. For

each of the following scenarios, describe how you would distribute them and what indexes you

would build at each site. If you feel that you have insufficient information to make a decision,

explain briefly.

1. Half the departments are located in Manila, and the other half are in Nairobi. Depart-

ment information, including that for employees in the department, is changed only at the

site where the department is located, but such changes are quite frequent. (Although the

location of a department is not included in the Departments schema, this information

can be obtained from another table.)

2. Half the departments are located in Manila, and the other half are in Nairobi. Depart-

ment information, including that for employees in the department, is changed only at

the site where the department is located, but such changes are infrequent. Finding the

average salary for each department is a frequently asked query.

3. Half the departments are located in Manila, and the other half are in Nairobi. Employees

tuples are frequently changed (only) at the site where the corresponding department is lo-

cated, but the Departments relation is almost never changed. Finding a given employee’s

manager is a frequently asked query.

4. Half the employees work in Manila, and the other half work in Nairobi. Employees tuples

are frequently changed (only) at the site where they work.

Answer 21.9 1. Given that department information is frequently changed only at the site

where it is located, horizontal fragmentation based on department location (recall that

location is available in another table) will increase performance. Without knowing more

about access patterns to employee data, it is impossible to say precisely what should

be done with the Employees relation and what indexes would be useful. However, it

is likely that given its size, a similar geographically based horizontal fragmentation of

Employees along with an index on its did field would be useful in coordinating updates

to the Departments.

2. Given that department information is infrequently changed only at the site where it

is located, replication of Departments at both Manila and Nairobi will have a positive

effect. There is insufficient information given to clearly decide on asynchronous vs.

synchronous replication. On the one hand, infrequent updates to Departments suggests

that the accuracy gains from synchronous replication may outweigh the efficiency loss.

Yet on the other hand, the most frequent query is for a departmental salary average, i.e.,

not for a exact number. Hence the low utility of precision suggests that semi-frequent

asynchronous replication may be superior.

Depending on the access patterns of the departmental average salary queries, Employees

may or may not be replicated at both sites. The sheer size of Employees suggests that

replication could be very costly. Avoiding it by horizontal fragmentation on the did field

may prove optimal overall. Even if other accesses were slower, the gains in terms of

faster departmental average salary queries might tip the balance. For either replication

strategy, indexes on the did field in both Employees and Departments would greatly

enhance the speed of average salary by department queries.

Parallel and Distributed Databases 211

3. Given that Employees tuples are frequently changed at the home site, horizontal frag-

mentation is very appealing. Since the results of the queries are for a single employee’s

manager, i.e., small result relations, there is little incentive for any replication strategy

for Employees. Given that Departments almost never changes and is used for exact

answer queries, synchronous replication is the best alternative. The slight loss in effi-

ciency is easily won back in the ability to find an employees’ manager immediately. The

overhead of indexes on each of the key fields,eid and did, is also easily justified.

4. Given that half of the employees work in Manila, the other half work in Nairobi, and

Employees’ tuples are frequently changed only where they work; the obvious strategy is to

horizontally fragment Employees based on worker’s location (assuming this information

is available in another table). Indexes on Employees’ did field for each locations fragment

would also speed the frequent accesses necessary for updating the tuples.

Exercise 21.10 Suppose that the Employees relation is stored in Madison and the tuples

with sal ≤ 100, 000 are replicated at New York. Consider the following three options for lock

management: all locks managed at a single site, say, Milwaukee; primary copy with Madison

being the primary for Employees; and fully distributed. For each of the lock management

options, explain what locks are set (and at which site) for the following queries. Also state

which site the page is read from.

1. A query submitted at Austin wants to read a page containing Employees tuples with

sal ≤ 50, 000.

2. A query submitted at Madison wants to read a page containing Employees tuples with

sal ≤ 50, 000.

3. A query submitted at New York wants to read a page containing Employees tuples with

sal ≤ 50, 000.

Answer 21.10 Answer omitted.

Exercise 21.11 Briefly answer the following questions:

1. Compare the relative merits of centralized and hierarchical deadlock detection in a dis-

tributed DBMS.

2. What is a phantom deadlock? Give an example.

3. Give an example of a distributed DBMS with three sites such that no two local waits-for

graphs reveal a deadlock, yet there is a global deadlock.

4. Consider the following modification to a local waits-for graph: Add a new node Text, and

for every transaction Ti that is waiting for a lock at another site, add the edge Ti → Text.

Also add an edge Text → Ti if a transaction executing at another site is waiting for Ti

to release a lock at this site.

(a) If there is a cycle in the modified local waits-for graph that does not involve Text,

what can you conclude? If every cycle involves Text, what can you conclude?

212 Chapter 21

(b) Suppose that every site is assigned a unique integer site-id. Whenever the local

waits-for graph suggests that there might be a global deadlock, send the local waits-

for graph to the site with the next higher site-id. At that site, combine the received

graph with the local waits-for graph. If this combined graph does not indicate a

deadlock, ship it on to the next site, and so on, until either a deadlock is detected

or we are back at the site that originated this round of deadlock detection. Is this

scheme guaranteed to find a global deadlock if one exists?

Answer 21.11 1. A centralized deadlock detection scheme is better for a distributed

DBMS with uniform access patterns across sites since dead-locks occurring between

any two sites are immediately identified. However, this benefit comes at the expense of

frequent communications between the central location and every other site.

It is often the case that access patterns are more localized, perhaps by geographic area.

Since deadlocks are more likely to occur among sites with frequent communication, the

hierarchical scheme will be more efficient in that it checks for deadlocks where they are

most likely to occur. In other words, the hierarchical scheme expends deadlock detection

efforts in correlation to their probability of occurrence, thus resulting in greater efficiency.

2. A phantom deadlock is defined as a falsely identified deadlock resulting from the time

delay in sending local waits-for information to a central or parent site. A cycle appearing

in the central or parent’s global waits-for graph may in actuality have disappeared by

the time the graph nodes are received and constructed. The phantom may result in some

transactions being killed unnecessarily.

For example, imagine that transaction T1 at site A is waiting for T2 at site B which is

in turn waiting for T1. Then the local waits-for graphs are sent to the central detection

site. Meanwhile, transaction T2 aborts for an unrelated reason and T1 no longer waits.

Unfortunately for T1, the central site has identified a cycle in the global waits and chooses

to kill T1!

3. Imagine three transactions T1, T2, and T3 at sites A, B, and C respectively. Suppose

that T1 waits for T2 which in turn waits for T3. Comparing any two graphs in this

waits-for-triangle will not reveal the global deadlock.

4. (a) A cycle in the modified waits for graph not involving Text clearly indicates that the

deadlock is internal to the site with the graph. If every cycle involves Text, then there

may be a multiple-site or potentially global deadlock.

(b) The scheme is guaranteed to find a global deadlock provided that the deadlock exists

prior to when the first waits-for graph is sent. If this condition is met, then the global

deadlock will be uncovered before any node receives a graph containing its own nodes

back.

Exercise 21.12 Timestamp-based concurrency control schemes can be used in a distributed

DBMS, but we must be able to generate globally unique, monotonically increasing timestamps

without a bias in favor of any one site. One approach is to assign timestamps at a single site.

Another is to use the local clock time and to append the site-id. A third scheme is to use a

counter at each site. Compare these three approaches.

Answer 21.12 Answer omitted.

Parallel and Distributed Databases 213

Exercise 21.13 Consider the multiple-granularity locking protocol described in Chapter 18.

In a distributed DBMS the site containing the root object in the hierarchy can become a

bottleneck. You hire a database consultant who tells you to modify your protocol to allow

only intention locks on the root, and to implicitly grant all possible intention locks to every

transaction.

1. Explain why this modification works correctly, in that transactions continue to be able

to set locks on desired parts of the hierarchy.

2. Explain how it reduces the demand upon the root.

3. Why isn’t this idea included as part of the standard multiple-granularity locking protocol

for a centralized DBMS?

Answer 21.13 1. The consultant’s suggestion of allowing only intention locks on the root

works correctly because it does not prevent any transaction from obtaining a shared or

exclusive lock on any sub-structure contained within the root. Recall that to obtain a

shared lock, a transaction must first have an intention shared lock and to get an exclusive

lock it must first have an intention exclusive lock. The only limitation resulting from the

modification is that transactions wishing to modify the entire structure contained within

the root must wait to obtain the necessary locks on every child of the root node.

2. The demand upon the root is reduced for two reasons. First, no transaction may greedily

occupy the entire structure and must choose the relevant substructure. Second, the

implicit granting of all possible intention locks to every transaction requesting access to

any structure contained within the root reduces the load on the Lock Manager and the

size of the waiting or fairness queue. Transactions need not wait in line for the intention

locks. For these reasons, the bottleneck problem will be minimized.

3. This idea is not included as part of the Multiple-Granularity locking protocol for a

centralized DBMS, or in general for a distributed DBMS, because it is a custom solution

to a specific problem. The standard protocol could not predict which if any root or

sub-root structures may become bottlenecks and so as is typical of standards, it opts for

the general solution to the given problem.

Exercise 21.14 Briefly answer the following questions:

1. Explain the need for a commit protocol in a distributed DBMS.

2. Describe 2PC. Be sure to explain the need for force-writes.

3. Why are ack messages required in 2PC?

4. What are the differences between 2PC and 2PC with Presumed Abort?

5. Give an example execution sequence such that 2PC and 2PC with Presumed Abort

generate an identical sequence of actions.

6. Give an example execution sequence such that 2PC and 2PC with Presumed Abort

generate different sequences of actions.

7. What is the intuition behind 3PC? What are its pros and cons relative to 2PC?

8. Suppose that a site does not get any response from another site for a long time. Can the

first site tell whether the connecting link has failed or the other site has failed? How is

such a failure handled?

214 Chapter 21

9. Suppose that the coordinator includes a list of all subordinates in the prepare message.

If the coordinator fails after sending out either an abort or commit message, can you

suggest a way for active sites to terminate this transaction without waiting for the

coordinator to recover? Assume that some but not all of the abort/commit messages

from the coordinator are lost.

10. Suppose that 2PC with Presumed Abort is used as the commit protocol. Explain how

the system recovers from failure and deals with a particular transaction T in each of the

following cases:

(a) A subordinate site for T fails before receiving a prepare message.

(b) A subordinate site for T fails after receiving a prepare message but before making

a decision.

(c) A subordinate site for T fails after receiving a prepare message and force-writing

an abort log record but before responding to the prepare message.

(d) A subordinate site for T fails after receiving a prepare message and force-writing a

prepare log record but before responding to the prepare message.

(e) A subordinate site for T fails after receiving a prepare message, force-writing an

abort log record, and sending a no vote.

(f) The coordinator site for T fails before sending a prepare message.

(g) The coordinator site for T fails after sending a prepare message but before collecting

all votes.

(h) The coordinator site for T fails after writing an abort log record but before sending

any further messages to its subordinates.

(i) The coordinator site for T fails after writing a commit log record but before sending

any further messages to its subordinates.

(j) The coordinator site for T fails after writing an end log record. Is it possible for the

recovery process to receive an inquiry about the status of T from a subordinate?

Answer 21.14 Answer omitted.

Exercise 21.15 Consider a heterogeneous distributed DBMS.

1. Define the terms multidatabase system and gateway.

2. Describe how queries that span multiple sites are executed in a multidatabase system.

Explain the role of the gateway with respect to catalog interfaces, query optimization,

and query execution.

3. Describe how transactions that update data at multiple sites are executed in a multi-

database system. Explain the role of the gateway with respect to lock management,

distributed deadlock detection, Two-Phase Commit, and recovery.

4. Schemas at different sites in a multidatabase system are probably designed independently.

This situation can lead to semantic heterogeneity; that is, units of measure may differ

across sites (e.g., inches versus centimeters), relations containing essentially the same

kind of information (e.g., employee salaries and ages) may have slightly different schemas,

and so on. What impact does this heterogeneity have on the end user? In particular,

comment on the concept of distributed data independence in such a system.

Parallel and Distributed Databases 215

Answer 21.15 1. A multi-database system (a.k.a. heterogeneous distributed database sys-

tem) is defined as a distributed DBMS where sites operate under different DBMS pack-

ages or software. A gateway is defined as a communication protocol or standard used by

two different DBMS packages to transmit information.

2. Queries in a multi-database system originate in system designated as the primary DBMS

for the given query. Catalog interfaces provide the primary system with the information

necessary to optimize and sub-divide the query to the sub-sites where relevant data is

located. The primary system sends an optimized SQL query written in a variant of

SQL that complies with the gateway protocol. After messages are sent back and forth

to ensure compliance with locking and commit protocols, the sub-sites re-optimize their

queries based on their (presumably more current) catalog information. The sub-sites then

process the query and return the resulting tuples to the primary site which assembles

them and presents them to the user.

3. Transactions that update data at multiple sites in a heterogeneous distributed DBMS

must adhere to agreed upon locking and commit protocols just as in any DBMS with

concurrency control and recovery. In any distributed system, a series of messages are

associated with updates between sites to guarantee safe atomic transactions. In a hetero-

geneous system, communication between the different types of DBMS at different sites

occurs through the gateway. The gateway provides communication channels for lock re-

quests and responses, waits-for graphs messages, transmission of recovery logs, and the

prepare, yes, no, commit, ack, and abort messages associated with two-phase commit.

Given the diversity, frequency, and accuracy requirements of these essential communi-

cations it comes as no surprise that efficient gateways have not yet been successfully

implemented on a wide scale.

4. The existence of semantic heterogeneity may have a profoundly confusing and/or adverse

effect upon the end user. Imagine trying to understand how the average summer tem-

perature in the Sahara desert is only 50 when the measurement is mistakenly assumed

to be Fahrenheit. Or even worse, imagine investing your life savings in an security from

the London stock exchange because it seems so cheap (if it were really priced in US

dollars!). Beyond trivial unit conversions, there may even be different data structures

and relational schema at each of the distributed sites.

In these situations, the goal of distributed data independence, the idea that the user need

not know where or how the data is stored, is obviously compromised. A sophisticated

DBA could hopefully avoid the misunderstandings above by implicitly converting data

to the correct local units. More generally, the DBA could create different global views to

mask the underlying inconsistencies between sites. However, a large widely distributed

DBMS will cross cultural boundaries and whether for humor or for sorrow, will necessarily

instigate some semantic confusion.

C H A P T E R 22

Object-Based Databases

Practice Exercises

22.1 A car-rental company maintains a database for all vehicles in its cur-
rent fleet. For all vehicles, it includes the vehicle identification number,
license number, manufacturer, model, date of purchase, and color. Spe-
cial data are included for certain types of vehicles:

• Trucks: cargo capacity.

• Sports cars: horsepower, renter age requirement.

• Vans: number of passengers.

• Off-road vehicles: ground clearance, drivetrain (four- or two-wheel
drive).

Construct an SQL schema definition for this database. Use inheritance
where appropriate.
Answer: For this problem, we use table inheritance. We assume that
MyDate, Color and DriveTrainType are pre-defined types.

create type Vehicle
(vehicle id integer,
license number char(15),
manufacturer char(30),
model char(30),
purchase date MyDate,
color Color)

create table vehicle of type Vehicle

create table truck
(cargo capacity integer)
under vehicle

create table sportsCar

1

2 Chapter 22 Object-Based Databases

(horsepower integer
renter age requirement integer)

under vehicle

create table van
(num passengers integer)
under vehicle

create table offRoadVehicle
(ground clearance real
driveTrain DriveTrainType)

under vehicle

22.2 Consider a database schema with a relation Emp whose attributes are
as shown below, with types specified for multivalued attributes.

Emp = (ename, ChildrenSet multiset(Children), SkillSet multiset(Skills))
Children = (name, birthday)
Skills = (type, ExamSet setof(Exams))
Exams = (year, city)

a. Define the above schema in SQL, with appropriate types for each
attribute.

b. Using the above schema, write the following queries in SQL.

i. Find the names of all employees who have a child born on or
after January 1, 2000.

ii. Find those employees who took an examination for the skill
type “ typing” in the city “Dayton” .

iii. List all skill types in the relation Emp.

Answer:

a. No Answer.

b. Queries in SQL.

i. Program:

select ename
from emp as e, e.ChildrenSet as c
where ’March’ in

(select birthday.month
from c

)

ii. Program:

Practice Exercises 3

select e.ename
from emp as e, e.SkillSet as s, s.ExamSet as x
where s.type = ’typing’ and x.city = ’Dayton’

iii. Program:

select distinct s.type
from emp as e, e.SkillSet as s

22.3 Consider the E-R diagram in Figure 22.5, which contains composite,
multivalued, and derived attributes.

a. Give an SQL schema definition corresponding to the E-R diagram.

b. Give constructors for each of the structured types defined above.

Answer:

a. The corresponding SQL:1999 schema definition is given below.
Note that the derived attribute age has been translated into a
method.

create type Name
(first name varchar(15),
middle initial char,
last name varchar(15))

create type Street
(street name varchar(15),
street number varchar(4),
apartment number varchar(7))

create type Address
(street Street,
city varchar(15),
state varchar(15),
zip code char(6))

create table customer
(name Name,
customer id varchar(10),
address Adress,
phones char(7) array[10],
dob date)

method integer age()

b. create function Name (f varchar(15), m char, l varchar(15))
returns Name
begin

set first name = f;
set middle initial = m;
set last name = l;

end
create function Street (sname varchar(15), sno varchar(4), ano varchar(7))

4 Chapter 22 Object-Based Databases

returns Street
begin

set street name = sname;
set street number = sno;
set apartment number =ano;

end
create function Address (s Street, c varchar(15), sta varchar(15), zip varchar(6))
returns Address
begin

set street = s;
set city = c;
set state =sta;
set zip code =zip;

end

22.4 Consider the relational schema shown in Figure 22.6.

a. Give a schema definition in SQLcorresponding to the relational
schema, but using references to express foreign-key relationships.

b. Write each of the queries given in Exercise 6.13 on the above
schema, using SQL.

Answer:

a. The schema definition is given below. Note that backward ref-
erences can be addedbut they are not so important as in OODBS

because queries can be written in SQL and joins can take care of
integrity constraints.

create type Employee
(person name varchar(30),
street varchar(15),
city varchar(15))

create type Company
(company name varchar(15),
(city varchar(15))

create table employee of Employee
create table company of Company
create type Works

(person ref(Employee) scope employee,
comp ref(Company) scope company,
salary int)

create table works of Works
create type Manages

(person ref(Employee) scope employee,
(manager ref(Employee) scope employee)

create table manages of Manages

b. i. select comp− >name

Practice Exercises 5

from works
group by comp
having count(person) ≥ all(select count(person)

from works
group by comp)

ii. select comp− >name
from works
group by comp
having sum(salary) ≤ all(select sum(salary)

from works
group by comp)

iii. select comp− >name
from works
group by comp
having avg(salary) > (select avg(salary)

from works
where comp− >company name="First Bank Corporation")

22.5 Suppose that you have been hired as a consultant to choose a database
system for your client’s application. For each of the following appli-
cations, state what type of database system (relational, persistent pro-
gramming language–based OODB, object relational; do not specify a
commercial product) you would recommend. Justify your recommen-
dation.

a. A computer-aided design system for a manufacturer of airplanes.

b. A system to track contributions made to candidates for public
office.

c. An information system to support the making of movies.

Answer:

a. A computer-aided design system for a manufacturer of airplanes:
An OODB system would be suitable for this. That is because CAD

requires complex data types, and being computation oriented,
CAD tools are typically used in a programming language envi-
ronment needing to access the database.

b. A system to track contributions made to candidates for public
office:
A relational system would be apt for this, as data types are ex-
pected to be simple, and a powerful querying mechanism is es-
sential.

c. An information system to support the making of movies:
Here there will be extensive use of multimedia and other complex
data types. But queries are probably simple, and thus an object
relational system is suitable.

6 Chapter 22 Object-Based Databases

22.6 How does the concept of an object in the object-oriented model differ
from the concept of an entity in the entity-relationship model?
Answer: An entity is simply a collection of variables or data items.
An object is an encapsulation of data as well as the methods (code) to
operate on the data. The data members of an object are directly visible
only to its methods. The outside world can gain access to the object’s
data only by passing pre-defined messages to it, and these messages
are implemented by the methods.

1. Why we need to consider optimizing queries for parallel execution?

2. Define and describe Distributed Timestamp-Based Protocols. Explain in brief distributed

validation.

3. Define and describe types of skew. How to handling Skew in Range-Partitioning

4. What are the similarities and differences between parallel and distributed database

management systems?

5. Describe Two-Phase Commit Protocol in distributed database system

6. Explain in brief Array and Multiset Types in SQL.

7. Consider a database schema with a relation Emp whose attributes are as shown below, with types

specified for multivalued attributes.

Emp = (ename, ChildrenSet multiset(Children), SkillSet multiset(Skills))

Children = (name, birthday)

Skills = (type, ExamSet setof(Exams))

Exams = (year, city)

a) Define the above schema in SQL, with appropriate types for each attribute.

b) Using the above schema, write the following queries in SQL.

i. Find the names of all employees who have a child born on or after January 1, 2000.

ii. Find those employees who took an examination for the skill type “typing” in the city “Dayton”.

iii. List all skill types in the relation Emp.

8.

Unit #3: XML Databases

Q #9) What is the difference between XML and HTML?
Answer:

XML HTML

XML consists of user defined tags. HTML consists of pre-defined tags.

XML is used to store and transform data. HTML is used for designing a web page.

XML is content driven. HTML is format driven.

XML is case sensitive. HTML is not case sensitive.

XML requires end tag for well formatted document. HTML does not require an end tag.

Q #10) What are the benefits of XML?
Answer: The benefits of XML are as follows:

 Simplicity: XML is simple to read and understand.
 Availability: XML can be created using any text editor.
 Flexibility: XML doesn’t have any fixed tags, hence user-defined tags can also

be used.
Q #11) What importance does XSLT hold in XML?
Answer: XSLT stands for Extensible Style sheet Language Transformation. It is used to
transform an XML document to HTML before it is displayed to any browser.
Q #12) What is XQuery?
Answer: XQuery is used to fetch data from the XML file, which is the SQL database.
Q #13) What is Xlink in XML?
Answer: Xlink used in XML files, are the standard way of creating hyperlinks in XML
files.
Q #14) What is Xpointer in XML?
Answer: Xpointer in XML allows hyperlinks to point to more specific parts of the XML
documents or files.
Q #15) What is XML signature/encryption?
Answer: It defines the processing rules and syntax for encrypting and creating digital
signatures on XML.
Q #16) What is DTD in XML?
Answer: DTD stands for Document Type Definition, which describes a document written
in XML. XML declaration syntax is defined in DTD. Naming convention rules of different
types of elements are also defined in DTD.
Q #17) What is DOM? What is it used for?
Answer: DOM stands for the Document Object Model. It is an API, Application
Programming Interface that allows navigation through objects. Documents are treated as
objects. DOM documents are generated by the user or created by a parser.
Q #18) What is the main disadvantage of DOM?
Answer: The main disadvantage is that a large portion of memory is consumed by
DOM.
Q #19) What does SOAP stand for?
Answer: SOAP is a Simple Object Access Protocol.
Q #20) What is the relation of SOAP with XML?

Answer: SOAP uses XML to define a protocol for the exchange of information in
distributed computing environments.
Q #21) What are the three components in SOAP?
Answer: It consists of an envelope, a set of encoding rules, and a convention for
representing remote procedure calls.
Q #22) What is XML parser function?
Answer: It is used to convert an XML file or document into the XML DOM object which
is usually written in JavaScript.
Q #23) What is an XML schema?
Answer: XML schema provides definition of an XML document.
It comprises of:

 Attributes and elements.
 Child elements.
 The data type of elements.
 Order of elements and attributes.

Q #24) What is CDATA in XML?
Answer: CDATA stands for character data. Characters like ‘<’ and ‘>’ are not allowed in
XML. CDATA starts with <! CDATA [“and end with”]>. CDATA is an unparsed character
data that cannot be parsed by the XML parser.
Q #25) How are comments used in XML?
Answer: Comments are displayed as <!—comment–> . It is similar to HTML. It can be
used for a single line or multiple lines.
Q #26) What is the usage of XML in development?
Answer: XML has multiple usages as shown below:

 XML is used for flat files and databases.
 It is used to store data and transport data on the Internet.
 It can generate different dynamic data using style sheets.
 XML is used to develop database-driven websites.
 It is used to store data for eCommerce websites.

Q #33) Describe XPath.
Answer: XPath can be described as follows:

1. XPath is a W3C recommendation.
2. It is the syntax for defining parts of an XML document.
3. It uses path expressions to navigate in the XML documents.
4. XPath contains a standard function library.
5. XPath is a major element of the XSLT standard.
6. It is used to navigate through attributes and elements in an XML document.

Q #34) Provide an example of XML.
Answer:
<? XML version=”1.0” encoding = “UTF-8”?>
<FurnitureStore>
<Furniture category=”Table”>
<Title lang=”en”> Sale for today</Title>
<Type> Laptop table</Type>
<Year>2008</Year>
<Price>500</Price>
</FurnitureStore>
Q #35) What are well-formed XML documents?
Answer: Well-formed XML documents have the following features:

1. An XML document must have a root element.
2. XML tags are case sensitive.
3. XML elements should be properly nested.

4. XML values should be properly quoted.
5. XML tags should be closed properly.

Q #36) What are XML attributes? Explain with an example.
Answer: XML attribute values should always be quoted. Single or double quotes can be
used in XML.
For example:

 <Person degree = “PHD”>
 <Person name = ‘Jacob’>

Q #37) Write a code for XML attribute and element.
Answer:
<Person location = “India”>
<Statename>Maharashtra</Statename>
<Cityname>Mumbai</Cityname>
</Person>
 <Person>
 <Location> India </Location>
 <Statename>Maharashtra</Statename>
 <Cityname>Mumbai</Cityname>
 </Person>
In the first element, location is an attribute. In last, location is an element. The user can
choose the attribute or element.

Q #38) Can XML files be viewed in browsers?
Answer: Yes, the XML file can be viewed in all known browsers. They are not displayed
as HTML pages.
Q #39) What is XML Httprequest? What are its advantages?
Answer: All modern browsers have a built-in XML Httprequest object to request for data
from a server.
Its advantages are as follows:

 Updating a web page without reloading the page.
 Request data from a server
 Receive data from a server after the page has been loaded.
 Send data to a server in the background.

Q #40) Example of HttpRequest.
Answer:
var xhttp= newXML Httprequest();
Xhttp.onreadystatechange=function();
{ If this.readystate==4&& this.status==200)
 { Action to be performed when document is ready;
Document.getelementbyID(“Demo”)
Innerhtml=xhttp.responseText;}};
Q #41) What is XML element?
Answer: The XML element contains start tag, end tag, and values.
For Example:

 <City> Pune </City>
 <Price> 400.00 </Price>

XML element with no value is said to be empty like <element> </element>

Q #42) What are XML naming rules?
Answer: Naming rules are:

 Element names must start with a letter or underscore.
 Element names are case sensitive.
 Element names cannot start with the letters XML.
 Element names can contain letters, digits, hyphens, underscore, and periods.

 Element names cannot contain spaces.
Q #43) What is SAX in XML?
Answer: SAX stands for Simple API for XML. It is a sequential access parser.
It provides a mechanism of reading data from an XML document. It is said to be an
alternative to DOM. DOM operates on the documents as a whole, SAX parsers operate
on each piece of the XML document sequentially.

SAX consumes less memory. It cannot be used to write an XML document.

Q #44) What is XSNL?
Answer: XSNL stands for XML Search Neutral Language. This language acts between
the meta-search interface and the targeted system.
Q #45) What is the difference between a simple element and a complex element?
Answer: Simple elements cannot be left empty. It contains fewer attributes, child
elements, etc. Simple elements are text-based elements. Complex elements can contain
sub-elements, empty elements, etc. The complex element can hold multiple attributes
and elements.

Set#2

3. When would I use XML instead of SQL?

Ans: SQL is good for tabular data, or information that fits neatly into rows and columns.
XML is ideal for hierarchical data or data that has multiple levels of varying sizes. SQL is
useful for storing and searching data. XML is useful for both conveying and formatting
data.

Instead of developing a whole database, you might utilise XML. However, I would
recommend that you consider the type and amount of data you want to keep, as well as
your justifications for not using a database. The relational elements of a database, such
as MySql or SQL, are one of the benefits of using one. The database server's ability to
execute a reasonable amount of work, as well as the fact that this is a typical method of
storing data in the tech world.

Nowadays, there are several alternatives to using a full-scale database, one of which is
XML.
You can also store data as a JSON object if you're using Javascript, or as an array in
whatever programming language, you're using. There are NoSql databases that use
JSON to store data as a single large array of key => value pairs that can be nested for
quite complex data structures. If you're using a framework like React, you can also use
Flux or Redux to store data in a Javascript structure known as a Store.

As a result, there are a number of alternatives to using a traditional database package like
MySql or SQL. However, as I previously stated, I would advise you to carefully consider
the reasons for not wanting to use a database, as well as whether the data you intend to
store is suitable for storage in one of the alternative options.

4. List some features of XML?

Ans:

 for managing data with a complex structure or data that is out of the ordinary.
 Markup language is used to describe data.
 Description of text data
 Format that is both human and computer-friendly
 Deals with data in a tree structure with only one root element.
 Long-term data storage and reusability are both excellent.

5. What is XML DOM?

Ans: The document object model is abbreviated as DOM. It specifies how to access and
manipulate documents in a consistent manner. The Document Object Model (DOM) is an
HTML and XML document programming interface. It specifies how documents are
retrieved and changed, as well as their logical structure.

One of the main goals of the Document Object Model as a W3C definition is to provide a
common programming interface that can be utilised in a wide range of settings and
applications. Any programming language can use the Document Object Model. The XML
Document Object Model (DOM) specifies a standard for accessing and manipulating XML
documents.

6. How XML is different from HTML?

Ans: HTML and XML vary in that HTML displays data and describes the structure of a
webpage, while XML stores and transfers data. HTML is a predetermined language with
its own consequences, but XML is a standard language that can define additional
computer languages.

7. What is XML Schema?

Ans: XML Schema Definition(XSD) is another name for XML Schema . It describes and
validates the structure and content of XML data. The elements, attributes, and data types
are defined by the XML schema. Namespaces are supported by Schema elements. It is
analogous to a database schema, which describes the data in a database.

10. What is DTD?

Ans: A Document Type Definition (DTD) describes a document's tree structure as well as
some information about its data. It is a set of markup assertions that define a type of
document for the SGML family, such as GML, SGML, HTML, and XML.

A DTD can be declared inline or as an external recommendation within an XML document.
The DTD specifies how many times a node should appear and how their child nodes
should be ordered.

PCDATA and CDATA are the two data types.

 PCDATA is character data that has been parsed.
 CDATA is character data that is not typically parsed.

12.

Unit #4: Mobile Databases

1. What is a Mobile Database System (MDS)? Explain.

2. What is mobile and intermittent connectivity? Explain

3. Personal Communication System (PCS) with neat sketch

4. Explain various problems with cellular structure with neat sketches

5. Explain Handoff types with reference to link transfer

6. With respect to PCS, explain with neat sketch various steps in Location

Management

7. Explain with neat sketch A Reference Architecture (Client-Server model) of Mobile

database system (MDS)

8. What are MDS Data Management Issues? Explain each one in brief

9. What are various Mobile Transaction Models? Explain each one in brief

10. Describe in brief frequency reuse by personal communication system.

11. Define and Describe the architecture of Mobile Database System. What are the

issues of Mobile Database System.

12. Define Handoff in personal communication system. Explain Handoff detection

strategies in detail.

13. Explain in brief transaction management of Mobile Database System.

14.

1. Consider the following recursive DTD:

<!DOCTYPE parts [

<!ELEMENT part (name, subpartinfo*)>

<!ELEMENT subpartinfo (part, quantity)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

] >

a. Give a small example of data corresponding to this DTD.

b. Show how to map this DTD to a relational schema. You can assume that part names are

unique; that is, wherever a part appears, its subpart structure will be the same.

c. Create a schema in XML Schema corresponding to this DTD.

2. What is XML query? Write all application of XML in detail.

Unit #5 & 6

1. What is an Intelligent Database? What are the Features of an Ideal

Intelligent DB?

2. What is a Multimedia DBMS? What are the requirements of

Multimedia DBMS?

3. Expalin Relational Calculi

4. Explain in brief System Architecture of Petrographer.

5. What are the major issues in Multimedia DBMS.

6. Describe Recursive Queries in SQL.

7. What is Multimedia database? And What are Content of

Multimedia Database management system?

Multimedia database is the collection of interrelated multimedia data that
includes text, graphics (sketches, drawings), images, animations, video,
audio etc and have vast amounts of multisource multimedia data. The
framework that manages different types of multimedia data which can be
stored, delivered and utilized in different ways is known as multimedia
database management system. There are three classes of the multimedia
database which includes static media, dynamic media and dimensional
media.
Content of Multimedia Database management system :

1. Media data – The actual data representing an object.
2. Media format data – Information such as sampling rate, resolution,

encoding scheme etc. about the format of the media data after it goes
through the acquisition, processing and encoding phase.

3. Media keyword data – Keywords description relating to the generation of
data. It is also known as content descriptive data. Example: date, time
and place of recording.

4. Media feature data – Content dependent data such as the distribution of
colors, kinds of texture and different shapes present in data.

3. What are various Areas where multimedia database is applied?

 Documents and record management : Industries and businesses that

keep detailed records and variety of documents. Example: Insurance
claim record.

 Knowledge dissemination : Multimedia database is a very effective tool
for knowledge dissemination in terms of providing several resources.
Example: Electronic books.

 Education and training : Computer-aided learning materials can be
designed using multimedia sources which are nowadays very popular
sources of learning. Example: Digital libraries.

 Marketing, advertising, retailing, entertainment and travel. Example: a
virtual tour of cities.

 Real-time control and monitoring : Coupled with active database
technology, multimedia presentation of information can be very effective
means for monitoring and controlling complex tasks Example:
Manufacturing operation control.

4. What are various challenges to multimedia databases? Explain.

There are still many challenges to multimedia databases, some of which are:

1. Modelling – Working in this area can improve database versus
information retrieval techniques thus, documents constitute a specialized
area and deserve special consideration.

2. Design – The conceptual, logical and physical design of multimedia
databases has not yet been addressed fully as performance and tuning
issues at each level are far more complex as they consist of a variety of
formats like JPEG, GIF, PNG, MPEG which is not easy to convert from
one form to another.

3. Storage – Storage of multimedia database on any standard disk presents
the problem of representation, compression, mapping to device
hierarchies, archiving and buffering during input-output operation. In
DBMS, a ”BLOB”(Binary Large Object) facility allows untyped bitmaps to
be stored and retrieved.

4. Performance – For an application involving video playback or audio-
video synchronization, physical limitations dominate. The use of parallel
processing may alleviate some problems but such techniques are not yet
fully developed. Apart from this multimedia database consume a lot of
processing time as well as bandwidth.

5. Queries and retrieval –For multimedia data like images, video, audio
accessing data through query opens up many issues like efficient query
formulation, query execution and optimization which need to be worked
upon.

5. Difference Between Multimedia and Hypermedia
Multimedia integrates different forms of content such as text, audio, video, graphics,
etc., to form a single presentation. We come across so many different forms of
multimedia element on almost every webpage or App that we open. Multimedia is
definitely heavy than the traditional static text-based content, but any form of
multimedia can immediately attract the users' attention and convey the message
quickly.

Hypermedia is a mix of hypertext with media such as graphics, sounds, and
animations. It can be understood as the improved version of hypertext.

Read through this article to find out more about Multimedia and Hypermedia and how
they are different from each other.

What is Multimedia?
In contrast to conventional mass media such as printed material or audio recordings,
multimedia is a type of communication that integrates multiple content formats such
as text, audio, pictures, animations, or video into a single presentation. Video
podcasts, audio slideshows, and animated videos are all forms of multimedia.

Multimedia components provide us with high-quality images, animations, sounds, and
text information that have a direct influence on the user's brain. We can also edit all
these forms of multimedia.

What is Hypermedia?
Hypermedia is the next generation of hypertext, containing a variety of media such as
images, text, audio, video, and moving visuals. Both hypermedia and hypertext have
a structure that is comparable.

 Hypermedia includes much more sophisticated capabilities such as webpage
clickable connections. The most frequent hypermedia link is an image link that leads
to another website.

Hypermedia has a wide range of applications from problem solving and qualitative
research to electronic studying and sophisticated learning. The Aspen Movie Map
was, perhaps, the first hypermedia creation. HyperCard by Bill Atkinson popularized
hypermedia writing, and a number of literary hypertext and hypertext works, both
fiction and nonfiction, illustrated the promise of connections.

The majority of current hypermedia is provided via electronic pages from a wide range
of technologies, including media players, web browsers, and standalone programs.

Difference between Multimedia and Hypermedia
The following table highlights the major differences between Multimedia and
Hypermedia −

Comparison Multimedia Hypermedia

Basic
Multimedia reflects the different ways in

which information may be represented.

It is a hypertext extension rather than a

text-based system.

Types available
There are both linear and non-linear

options available.

Only non-linear options are available.

Relation
Hypermedia is created when it is

combined with hypertext.

It represents information that is mix of

hypertext and multimedia.

Based on

It mostly relies on interactivity and

interaction.

It's utilized for crossreferencing as well

as inter-connectivity between

components.

Requirements of

hardware

Multimedia necessitates its own

distribution mechanism, which is

referred to as a multimedia delivery

system.

To improve capability, it gives clickable

connections.

Contents

Multimedia is a mix of media and

content that saves data in some

manner across many devices.

Hypermedia contains more contrasted

characters and it is commonly utilized in

non-linear data analysis.

