	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE
	Question Bank
	Course: B. Tech.Branch : Civil EngineeringSemester : VIII
	Subject Code & Name: BTCVSS802D (Soil Structure Interaction)
	Module 1
1.	List out the different primary objectives of soil exploration.
2.	Enlist different soil exploration methods and explain any one in detail.
3.	Explain Geophysical exploration method to determine the Soil properties.
4.	Explain various methods to determine the shear strength of soil.
5.	Explain the design criterion of foundation is settlement.
6.	State different types of samples and samplers.
7.	State and explain different types of bearing capacities.
8.	Explain Terzaghi's Bearing capacity theory in detail with neat sketch.
9.	Explain the effect of water table on bearing capacity of soil.
10.	Explain Meyerhof's Bearing capacity analysis in detail with neat sketch.
	Module 2
1.	Explain the Settlement of clay or cohesive soil and that of granular or non-cohesive soil or
	sand.
2.	Explain the difference between immediate settlement and consolidation settlement.
3.	Explain the Plate load test in details with neat sketch.
4.	Explain bearing capacity measurement on granular soil based on SPT.
5.	Explain design criterion for shallow foundation.
6.	Explain Winkler's idealization method.
7.	Explain the idealization of the supporting soil medium and discuss the analysis of soil
	structure interaction.
8.	Explain the concept of modulus of sub-grade reaction.
9.	Explain any one of the following in details a) Hetenyi model. B) Pasternak model
10.	Discuss the concept of beam on elastic foundation.
	Module 3
1.	Discuss the concept of beam on elastic foundation.
2.	Solve one example on the beam with finite length subjected to a concentrated load. Assume
	the necessary data and mention it clearly.
3.	Discuss the expressions for deflection, slope, bending moment and shear force for a beam with finite length.
4.	State the classification of finite beams stiffness.

5.	A beam with finite length, $l = 3$ m. The cross section of the beam is, 0.25 m × 0.2 m. A
	concentrated load of 22.2 kN is applied on the beam. The distance from A to the loading
	point is 'a' and that from B to the loading point is 'b'. Here, $a = 0.75$ m and $b = 2.25$ m. E
	value is 10.342×10^6 kN/m ² and I value is 1.67×10^{-4} m ⁴ .
6.	Explain the continuity among the foundation soil layers.
7.	Discuss about the time-dependent response of the soil.
8.	Derive the expression for deflection, slope, bending moment and shear
	force for a beam.
9.	Analyze the infinite beam resting on soil subjected to a concentrated load of 200 kN.
10.	Analyze the beam infinite load resting on soil is subjected to a concentrated
	moment M ₀ acting at centre. Find the deflection for this loading condition.
	Module 4
1.	Discuss the Poisson-Kirchhoff plate theory for thin plates.
2.	Explain the rectangular plate resting on the winkler spring
3.	Explain the circular plate resting on the winkler spring
4.	Discuss the use of finite difference method for soil structure interaction problems.
5.	Discuss the procedure to be followed to obtain the solution in case of a two parameter linear model.
6.	Discuss the procedure to be followed to obtain the solution in case of a two parameter non- linear model.
7.	Determining the solution for a finite beam resting on two parameter soil medium under plane strain condition. a) when slope at the centre is zero $(x = 0)$ b) The shear force will be zero at the centre $(x = 0)$
8.	Determining the solution for a finite beam resting on two parameter soil medium under plane strain condition. a) The bending moment will be 0 at the edge where, $x = b'$. b) The shear force is also 0 at $x = b'$ (free end).
9.	Discuss the finite difference method in plate problem under axi-symmetric loading condition and then for non-dimensional case.
10.	Solve the case of a circular plate resting on Winkler springs by FDM.
	Module 5
1.	Discuss use of the Pasternak shear model to model an embankment.
2.	Explain the classification of piles based on a load criteria.
3.	Explain the concept of critical depth in case of pile foundation.
4.	Derive the expression of ultimate bearing capacity for end bearing pile.
5.	Derive the expression of ultimate bearing capacity for friction pile.
6.	Explain the elastic analysis of single pile.
7.	Discuss the settlement of pile group under compressive load by interaction factor approach.
8.	Explain Reese and Matlock's generalized solution for grouped piles.
9.	Discuss the settlement of pile group under lateral load by interaction factor approach.
10.	Explain the uplift capacity of piles and anchors.