undefined  
DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE –  
RAIGAD -402 103  
Semester Examination May - 2019  
------------------------------------------------------------------------------------------------------  
ELECTRONICS & TELECOMMUNICATION  
-
Branch:  
Sem.:- II  
Subject with Subject Code:- SIGNALS & SYSTEMS (BTEXC404)  
Marks: 60  
Date:- 22/05/2019  
Time:- 3 Hr.  
=
=========================================================================  
Instructions to the Students  
1
2
3
4
. Each question carries 12 marks.  
. Attempt any five questions of the following.  
. Illustrate your answers with neat sketches, diagram etc., wherever necessary.  
. If some part or parameter is noticed to be missing, you may appropriately  
assume it and should mention it clearly  
_
____________________________________________________________  
(Marks)  
(6x2=12 M)  
Q.1. Attempt the following  
A) What is mean by signal? Explain Elementary signal.  
B) Sketch the even & odd components of step signal shown in fig.  
X(t)  
1
0
-t  
0
t
OR  
B) State & Explain sampling theorem & find nyquist rate of  
x(t)=sin 200t  
Q.2. Attempt the following  
(6x2=12 M)  
A) Find the convolution of x(n)={1,2,3,4,5} with h(n)={1,2,3,3,2,1}  
B) x(n)= (1/5) u(n), h(n)=3n u(n) find y(n)=x(n)*h(n)  
OR  
B) What are the properties of convolution? Explain Commutative Property of convolution.  
Q.3. Attempt the following  
(6x2=12 M)  
A) Explain Dirichlet conditions for existence of fourier series  
B) Find Exponential Fourier series for the signal shown in fig.  
A10D47D351C36413541E38D94279AAB2  
undefined  
X(t)=cos (t)  
Cos t  
-10  
-π/2  
0
π/2  
10  
OR  
B) Explain the properties of fourier series  
Q.4. Attempt the following  
(6x2=12 M)  
A) Find the fourier transform of x(t)= u(t)  
a>0  
B) Consider the rectangular pulse shown in fig.which is gate function find fourier transform.  
X(t)  
1
-T/2  
0
T/2  
OR  
B) Find Fourier transform of x(n)={2,-1,2,-2}  
Q.5. Attempt the following  
(6x2=12 M)  
Where x(t)=0 for t<0  
2
A) Given the laplace transform of x(t)  
LT  
ꢅ  
+2  
Determine the Laplace Transform of the following signals  
1
2
) x(3t)  
) x(t-2)  
(
ꢄ+ꢈ(ꢄ+1/4)  
ꢄ−1/2)  
B) Obtain Inverse Laplace transform of X(S) = ꢆ  
ROC:σ>-1/4  
Q.6. Attempt the following  
A) Define following terms  
(6x2=12 M)  
1
2
3
) Random Experiment  
) Sample Space  
) Probability  
B) A box contain 3 red,4 white & 5 black balls. One ball is drawn random find the probability that it  
is, 1) red 2) not black 3) Black or white  
*
***END****  
A10D47D351C36413541E38D94279AAB2