DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE.

Winter Examination - 2022

Course: - B. Tech.

Branch: - Common for All branches

Semester:- III

Subject Code & Name: BTBS301

Engineering Mathematics-III

Max. Marks: - 60

Date: - 09/03/2023

Duration: - 3-Hrs

Instructions to the Students:

- 1. All the questions are compulsory.
- 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

(Level/CO) Marks

- Q. 1 Solve Any Three of the following.
 - A) Find Laplace Transform of $e^{-3t} \sin^2 t$

L3/COI

12

B) Find Laplace Transform of $f(t) = \begin{cases} 1 & 0 < t < 1 \\ 0 & 1 < t < 2 \end{cases}$

L3/CO1 4

where f(t) is periodic function of period 2.

C) Evaluate using Laplace Transform.: ∫₀[∞] cos4t-cos3t</sup> dt

L3/C01

D) Find Laplace Transform of $(1 + 2t - 3t^2 + 4t^3)H(t-2)$ L3/CO1 4

Q2 Solve Any Three of the following.

12

A) Find the inverse Laplace transformation of the function. $\log \left(1 + \frac{a^2}{c^2}\right)$

B) By using convolution theorem find $L^{-1}\left[\frac{s}{(s^2+4)(s^2+9)}\right]$

L3/CO2

C) Find the inverse Laplace transformation of the function. $\frac{5s^2-15s-11}{(s+1)(s-2)^2}$

L3/CO2

D) Solve using Laplace transformation

$$y'' + 3y' + 2y = t\delta(t-1)$$
 for which $y(0) = y'(0) = 0$

L3/CO2

O.3 Solve Any Three of the following. (12)A) Using Parseval's identity prove that $\int_0^\infty \frac{x^2}{(x^2+1)^2} dx = \frac{\pi}{4}$ L3/C03 B) Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$ L3/C03 L3/CO3 C) Find the Fourier Sine transform e^{-ax}, a > 0 D) Find the Fourier cosine transform of the function $f(y) = \begin{cases} \cos y, & 0 < y < a \\ 0, & y > a \end{cases}$ L3/CO3 (12)Q.4 Solve Any Three of the following. L3/CO4 A) Form the partial differential equation by eliminating arbitrary constants from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 a$ B) Solve the Partial differential equation x(y-z)p + y(z-x)q = z(x-y)L3/CO4 C) Use the method of separation of variables to solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ given that $u(x, 0) = 6e^{-3x}$ L3/CO4 D) A bar with insulated at its ends is initially at temperature 0° C throughout. The end x = 0 is kept at 0 °C for all times and the heat is suddenly applied so that $\frac{\partial u}{\partial x} = 10$ at x = t for all time. Find the L3/CO4 temperature function u(x,t)Q.5 Solve Any Three of the following. (12)A) Determine k such that the function $f(z) = e^x \cos y + ie^x \sin ky$ is analytic. L3/CO5 B) Show that $u = x^2 - y^2 - 2xy - 2x + 3y$ is a harmonic function and hence determine the analytic function f(z) in terms of z. C) Determine the pole of the function $f(z) = \frac{2Z-1}{Z(Z+1)(Z-3)}$ and also find the residue at each pole & sum of all residues. L3/CO5 L3/C05 D) Evaluate $\oint_C \frac{\sin \pi z^2 + 2z}{(z-1)^2(z-2)} dz$, Where C is the circle |z| = 4

*** End ***

	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE	
	Supplementary Examination – Summer 2023	
	Course: B. Tech. (Common to all Branches) Semester : III	
	Subject Name & Code: Engineering Mathematics – III (BTBSC 301)	
	Max Marks: 60 Date: 08/08/2023 Duration: 3 Hrs.	
	Instructions to the Students: 1. Attempt any FIVE of the following questions. 2. All questions carry equal marks. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly.	Mari
Q. 1	Solve Any Two of the following.	12
A)	Find the Laplace transform of $F(t) = \frac{e^{-at} - e^{-bt}}{t}$	6
B)	Find the Laplace transform of $F(t) = \sin 2t \cos 3t$	6
C)	Find the Laplace transform of $erf(\sqrt{t})$.	6
Q.2	Solve Any Two of the following:	12
A)	State and prove the convolution theorem for finding the inverse Laplace transform.	6
B)	Using Partial Fraction method, find the inverse Laplace transform of $\tilde{f}(s) = \frac{5s+3}{(s-1)(s^2+2s+5)}$	6
C)	Find the inverse Laplace transform of $\bar{f}(s) = \cot^{-1}\left(\frac{s+3}{2}\right)$	6
Q. 3	Solve any Two of the following:	12
A)	Find the Fourier sine transform of $e^{- x }$, and hence show that $\int_0^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}$, $m > 0$	6
В)	Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & x \le 1 \\ 0, & x > 1 \end{cases}$. Hence evaluate $\int_0^\infty \left(\frac{x \cos x - \sin x}{x^3} \right) \cos \frac{x}{2} dx$.	6
C)	Evaluate the integral $\int_0^\infty \frac{t^2}{\left(t^2+1\right)^2} dt = \frac{\pi}{4}.$	6
Q.4	Solve any Two of the following:	12
A)	The partial differential equation by eliminating the arbitrary function from $z = x + y + f(xy)$	6
B)	The partial differential equations by eliminating the arbitrary constant $z = (x^2 + a)(y^2 + b)$	6
C)	Solve the following partial differential equations $(mz - ny)p + (nx + lz)q = ly - mx$ where the symbols have got their usual meanings.	6
Q. 5	Solve any Two of the following:	12
A)	Show that $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ is a harmonic function and hence determine the corre-	6

	*** End ***	
C)	Use Cauchy's integral formula to evaluate $\oint_C \frac{e^{2z}}{(z+1)^4} dz$, where C the circle is $ z = 2$.	6
B)	Evaluate $\oint_C \frac{e^{-z}}{z+1} dz$ where C is the circle $ z =2$ and $ z =\frac{1}{2}$	6
A)	Evaluate $\int_0^{1+i} (x^2 + iy) dx$ along the path $y = x$ and $y = x^2$	6
Q. 6	Solve any Two of the following:	
C)	Under the transformation $W = \frac{1}{\epsilon}$, find the image of $ z - 2\ell = 2$.	6
B)	If $f(z)$ is an analytic function with constant modulus, show that $f(z)$ is constant	6
	sponding analytic function	

		099
DR. BABASAHEB AMBEDKAR TECHNOLOGICAL U	NIVERSITY,	
LONERE		
End Semester Examination - Winter 2019		
Course: B. Tech in	Sem: III	
Subject Name: Engineering Mathematics-III (BTBSC301) Ma		
Date: 10/12/2019	Duration: 3 Hr.	
	(Level/CO)	Mark
Attempt the following.		12
Find $L\{cosht \int_0^t e^u coshu du\}$.	Analysis	4
If $f(t) = \begin{cases} t, & 0 < t < \pi \\ \pi - t, & \pi < t < 2\pi \end{cases}$ is a periodic function with period 2π . Find $L\{f(t)\}$.	Analysis	4
Using Laplace transform evaluate $\int_0^\infty e^{-at} \frac{\sin^2 t}{t} dt$	Evaluation	4
Attempt any three of the following.		12
Using convolution theorem find $L^{-1}\left\{\frac{1}{s(s+1)(s+2)}\right\}$	Application	4
Find $L^{-1}\{\bar{f}(s)\}$, where $\bar{f}(s) = \log\left(\frac{s^2+1}{s(s+1)}\right)$	Analysis	4
Using Laplace transform solve $y'' + 2y' + 5y = e^{-t} \sin t$; $y(0) = 0$, $y'(0) = 1$	Application	4
Find $L^{-1}\left\{\frac{s^2+2s-4}{(s-5)(s^2+9)}\right\}$	Analysis	4
Attempt any three of the following.		12
	LONERE End Semester Examination – Winter 2019 Course: B. Tech in Subject Name: Engineering Mathematics-III (BTBSC301) Date: $10/12/2019$ Instructionts to the Students: 1. Solve ANY FIVE questions out of the following. 2. The level question/expected answer as per OBE or the Course Ouwhich the question is based is mentioned in () in front of the quest 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. Attempt the following. Find $L\{\cosh t_0^t e^u \cosh u du\}$. If $f(t) = \begin{cases} t, & 0 < t < \pi \\ \pi - t, & \pi < t < 2\pi \end{cases}$ is a periodic function with period 2π . Find $L\{f(t)\}$. Using Laplace transform evaluate $\int_0^\infty e^{-at} \frac{\sin^2 t}{t} dt$ Attempt any three of the following. Using convolution theorem find $L^{-1}\{\frac{1}{s(s+1)(s+2)}\}$ Find $L^{-1}\{\bar{f}(s)\}$, where $\bar{f}(s) = \log\left(\frac{s^2+1}{s(s+1)}\right)$ Using Laplace transform solve $y'' + 2y' + 5y = e^{-t} \sin t$; $y(0) = 0$, $y'(0) = 1$ Find $L^{-1}\{\frac{s^2+2s-4}{(s-s)(s^2+9)}\}$	End Semester Examination – Winter 2019 Course: B. Tech in Sem: III Subject Name: Engineering Mathematics-III (BTBSC301) Marks: 60 Date: $10/12/2019$ Duration: 3 Hr. Instructionts to the Students: 1. Solve ANY FIVE questions out of the following. 2. The level question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. [Level/CO] Attempt the following. Find $L\{cosht\int_0^t e^{ut} coshu du \}$. Using Laplace transform evaluate $\int_0^\infty e^{-at} \frac{\sin^2 t}{t} dt$ Evaluation Attempt any three of the following. Using convolution theorem find $L^{-1}\{\int_{S(s+1)(s+2)}^{1} dt$ Evaluation Attempt any three of the following. Using Laplace transform solve $y'' + 2y' + 5y = e^{-t} \sin t$; $y(0) = 0$, Application $y'(0) = 1$ Find $L^{-1}\{\int_{(s-5)(s^2+9)}^{s^2+2s-4} dt$ Analysis

A)	Express the function $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$ as a Fourier sine integral and hence evaluate that $\int_0^\infty \frac{\sin \lambda x \sin \lambda \pi}{1 - \lambda^2} \ d\lambda$.	Evaluation	4
В)	Using Parseval's identity for cosine transform, evaluate	Application	. 4
	$\int_0^\infty \frac{dx}{(x^2 + a^2)(x^2 + b^2)} \ .$		
C)	Find the Fourier sine transform of $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 \le x \le 2, \\ 0, & x > 2 \end{cases}$	Analysis	4
D)	If $F_s\{f(x)\}=\frac{e^{-\alpha x}}{s}$, then find $f(x)$. Hence obtain the inverse Fourier sine transform of $\frac{1}{s}$.	Analysis	4
Q. 4	Attempt any three of the following.		12
A)	Form the partial differential equation by eliminating arbitrary function f from $f(x^2 + y^2 + z^2, 3x + 5y + 7z) = 0$	Synthesis	4
B)	Solve $pz - qz = z^2 + (x+y)^2$	Application	4
C)	Determine the solution of one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ where the boundary conditions are $u(0,t) = 0$, $u(l,t) = 0$ ($t > 0$) and the initial condition $u(x,0) = x$; l being the length of the bar.	Analysis	4
D	Use the method of separation of variables to solve the equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, \text{ given that } u(x, 0) = 6e^{-3x}$	Application	4
Q. 5	Attempt the following.		12
A)	Determine the analytic function $f(z)$ in terms of z whose real part is $\frac{\sin 2x}{\cosh 2y - \cos 2x}$	Analysis	4
B)	Prove that $u = x^2 - y^2 - 2xy - 2x + 3y$ is harmonic. Find a function v such that $f(z) = u + iv$ is analytic.	Analysis	4
C)	Find the bilinear transformation which maps the points $z = 0, -1, -i$ onto the points $w = i, 0, \infty$. Also, find the image of the unit circle $ z = 1$.	Analysis	4
Q. 6	Attempt the following.		12

	*** Paper End ***		
C)	Evaluate $\oint_C \frac{e^z}{\cos \pi z} dz$, where C is the unit circle $ z = 1$.	Evaluation	4
B)	Find the poles of function $\frac{x^2-2x}{(x+1)^2(x^2+4)}$. Also find the residue at each pole.	Analysis	4
	Use Cauchy's integral formula to evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where C is the circle $ z = 3$.	Evaluation	4

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

End Semester Examination – Winter 2018

Course: S.Y.B. Tech (All Branches)

Semester: III

Subject Name: Engineering Mathematics-III

Subject Code: BTBSC301

Max Marks: 60

Date:30/11/2018

Duration: 03 Hrs

Instructions to the Students:

- 1. Attempt Any Five questions of the following All questions carry equal marks.
- 2. Use of non-programmable scientific calculators is allowed.
- Figures to the right indicate full Marks.
- Q. 1. a) Show that,

$$\int_0^\infty \frac{\sin at}{t} dt = \frac{\pi}{2}.$$
 [4]

b) Find the Laplace transform of

$$\int_0^z \frac{e^{-2u}\sin zu}{u} du.$$
 [4]

c) Find the Laplace transform of the function.

$$f(t) = \begin{cases} 2 & 0 < t < \pi \\ 0 & \pi < t < 2\pi \\ \sin t & t > 2\pi \end{cases}$$
 [4]

Q.2. a) Find the inverse Laplace transform of $\cot^{-1}(\frac{s+1}{2})$.

141

b) By convolution theorem, find inverse Laplace transform of

$$\frac{s}{(s^2+1)(s^2+4)}$$
 [4]

c) By Laplace transform method, solve the following simultaneous

equations

$$\frac{dx}{dt} - y = e^t; \frac{dy}{dt} + x = \sin t; \text{ given that } x(0) = 1, y(0) = 0.$$

Q. 3. (a) Find the Fourier transform of

$$f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1. \end{cases}$$

b) Find the Fourier sine transform of $e^{-|x|}$, and hence show that

$$\int_0^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{ne^{-m}}{2}, \quad m > 0.$$
 [4]

c) Using Parseval's Identity, prove that

$$\int_0^\infty \frac{t^2}{(t^2+1)^2} dt = \frac{\pi}{4} \,. \tag{4}$$

Q.4. a) Solve the partial differential equation

$$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy.$$
 [4]

b) Use method of separation of variables to solve the equation

$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u \; ; \; given \; that \; u(x,0) = 6e^{-3x}. \tag{4}$$

c) Find the temperature in bar of length 2 units whose ends are kept at zero temperature and lateral surface insulated if initial temperature is

$$\sin\left(\frac{\pi x}{2}\right) + 3\sin\left(\frac{5\pi x}{2}\right). \tag{4}$$

- Q. 5. a) If f(z) is analytic function with constant modulus, show that f(z) is constant.
 - b) If the stream function of an electrostatic field is $\psi = 3xy^2 x^3$, find the potential function ϕ , where $f(z) = \phi + i\psi$. [4]
 - c) Prove that the inversion transformation maps a circle in the z-plane into a circle in w-plane or to a straight line if the circle in the z-plane passes [4] through the origin
 - Q.6. a) Evaluate $\oint_{\mathcal{C}} \frac{e^x}{(x-2)} dx$, where c is the circle |x| = 3. [4]
 - b) Evaluate $\oint_c \tan z \, dz$, where c is the circle |z| = 2. [4]
 - c) Evaluate, using Cauchy's integral formula: [4]
 - 1) $\oint_C \frac{\cos(\pi z)}{(z^2-1)} dz$ around a rectangle with vertices $2 \pm i$, $-2 \pm i$.
 - 2) $\oint_C \frac{\sin^2 z}{(z-\frac{z}{h})^3} dz$, where C is the circle |z| = 1.

*** End ***