DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Supplementary Summer Examination – 2023

Branch : B. Tech (Common to all)	Semester : III
Subject with code: Engineering Mathematics – III (BTBS 301)	Max Marks: 60
Date: 08/08/2023	Duration: 3 Hr

Instructions to the Students:

- 1. All the questions are compulsory.
- 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

		Level/CO	Marks
Q. 1	Solve Any Two of the following.		12
A)	A) Find the Laplace transform of $f(t) = \frac{e^t - \cos t}{t}$	Understand/	6
		(CO1)	
B)	B) Using Laplace transform prove That $\int_0^\infty t \ e^{-3t} \sin t \ dt = \frac{3}{50}$	Understand/	6
		(CO1)	
C)	Find the Laplace transform of the triangular wave function of period	Remember/	6
	2c given by $f(t) = \begin{cases} t, & 0 \le t \le c \\ 2c - t, & c < t < 2c \end{cases}$	(CO1)	
Q.2	Solve Any Two of the following.		12
A)	A) Find the inverse Laplace transforms of $\bar{f}(s) = \frac{s e^{-4s}}{s^2+9}$	Understand/	6
		(CO2)	
B)	By convolution theorem, find the inverse Laplace Transforms of	Understand/	6
	$\bar{\mathbf{f}}(\mathbf{s}) = \frac{1}{\mathbf{s}(\mathbf{s}^2 - \mathbf{a}^2)}$	(CO2)	
C)	Solve the equation $\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0$, where	Remember/ (CO2)	6
	$y = 1, \frac{dy}{dt} = 2, \frac{d^2y}{dt^2} = 2$ at $t = 0$, by Laplace transform method.		
Q. 3	Solve Any Two of the following.		12
A)	Using the Fourier integral representations, show that	Understand/	6
		(CO3)	
	$\int_0^\infty \frac{\cos x\omega}{1+\omega^2} \ d\omega = \frac{\pi}{2} e^{-x} \ (x \ge 0)$		

- B) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$. Understand/ 6 (CO3)
- C) Using Parseval's identity Evaluate $\int_0^\infty \frac{\sin^2 x}{x^2} dx$ Remember/ 6 (CO3)

Solve Any Two of the following.		12
Form the partial differential equation by eliminating the arbitrary functions from $z = f(x + it) + g(x - it)$	Understand/ (CO4)	6
Solve the partial differential equation $x(y^2 + z)p - y(x^2 + z)q = z(x^2 - y^2)$	Understand/ (CO4)	6
Use the method of separation of variables to solve the equation $\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0.$	Remember/ (CO4)	6
Solve Any Two of the following.		12
Find a function $w = u + iv$ which is analytic if $u = x^2 - y^2$.	Understand/ (CO5)	6
Evaluate $\int_{\mathcal{C}} \frac{\cos \pi z^2}{(z-1)(z-2)} dz$, where \mathcal{C} is $ z = \frac{3}{2}$.	Understand/ (CO5)	6
By Residue theorem evaluate $\int_C \frac{dz}{(z^2+4)^2}$, where <i>C</i> is the circle $ z-i = 2$	Understand/ (CO5)	6
	Solve Any Two of the following. Form the partial differential equation by eliminating the arbitrary functions from $z = f(x + it) + g(x - it)$ Solve the partial differential equation $x(y^2 + z)p - y(x^2 + z)q = z(x^2 - y^2)$ Use the method of separation of variables to solve the equation $\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$. Solve Any Two of the following. Find a function $w = u + iv$ which is analytic if $u = x^2 - y^2$. Evaluate $\int_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$, where <i>C</i> is $ z = \frac{3}{2}$. By Residue theorem evaluate $\int_C \frac{dz}{(z^2+4)^2}$, where <i>C</i> is the circle z - i = 2.	Solve Any Two of the following.Understand/Form the partial differential equation by eliminating the arbitraryUnderstand/functions from $z = f(x + it) + g(x - it)$ (CO4)Solve the partial differential equationUnderstand/ $x(y^2 + z)p - y(x^2 + z)q = z(x^2 - y^2)$ (CO4)Use the method of separation of variables to solve the equationRemember/ $\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0.$ (CO4)Solve Any Two of the following.CO4)Find a function $w = u + iv$ which is analytic if $u = x^2 - y^2$.Understand/(CO5)Understand/(CO5)By Residue theorem evaluate $\int_c \frac{dz}{(z^2+4)^2}$, where c is the circleUnderstand/ $ z - i = 2$. z z

*** End ***