pR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE.

Course: - B. Tech
Winter Examination - 2022
subject $^{\text {C }}$ Code \& Name: BTBS301
Engineering Mathematics-IIII
Max. Marks: - 60
Date: -09/03/2023 Duration:-3-Hrs
Instructions to the Students:

1. All the questions are compulsory.
2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
3. Use of non-programmable scientific calculators is allowed.
4. Assume suitable data wherever necessary and mention it clearly.
Q. 1 Solve Any Three of the following.
A) Find Laplace Transform of $e^{-3 t} \sin ^{2} t$

L3/CO1
4
B) Find Laplace Transform of $\mathrm{f}(\mathrm{t})=\left\{\begin{array}{cc}1 & 0<t<1 \\ 0 & 1<t<2\end{array}\right.$

L3/CO1
4 where $f(t)$ is periodic function of period 2 .
C) Evaluate using Laplace Transform.: $\int_{0}^{\infty} \frac{\cos 4 t-\cos 3 t}{t} d t$

L3/CO1
4
D) Find Laplace Transform of $\left(1+2 t-3 t^{2}+4 t^{3}\right) H(t-2) \quad$ L3/CO14

Q2 Solve Any Three of the following.

A) Find the inverse Laplace transformation of the function. $\log \left(1+\frac{a^{2}}{s^{2}}\right) \quad \mathrm{L} 3 / \mathrm{CO} 2$
B) By using convolution theorem find $L^{-1}\left[\frac{s}{\left(s^{2}+4\right)\left(z^{2}+9\right)}\right]$
C) Find the inverse Laplace transformation of the function. $\frac{5 s^{2}-15 s-11}{(s+1)(s-2)^{2}} \quad \mathrm{~L} 3 / \mathrm{CO} 2$
D) Solve using Laplace transformation
$y^{\prime \prime}+3 y^{\prime}+2 y=t \delta(t-1)$ for which $y(0)=y^{\prime}(0)=0$

Q. 3 Solve Any Three of the following.

A) Using Parseval's identity prove that $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{2}} d x=\frac{\pi}{4}$
B) Find the Fourier transform of

$$
f(x)=\left\{\begin{array}{cc}
1-x^{2}, & |x| \leq 1 \\
0, & |x|>1
\end{array}\right.
$$

C) Find the Fourier Sine transform $\mathrm{e}^{-\mathrm{ax}}, \mathrm{a}>0$
D) Find the Fourier cosine transform of the function $f(y)=\left\{\begin{array}{c}\cos y, 0<y<a \\ 0, y>a\end{array} \quad\right.$ L3/CO3
Q. 4 Solve Any Three of the following.
A) Form the partial differential equation by eliminating arbitrary constants from \quad L3/CO4 4

$$
(x-a)^{2}+(y-b)^{2}=z^{2} \cot ^{2} \alpha
$$

B) Solve the Partial differential equation $x(y-z) p+y(z-x) q=z(x-y) \quad$ L3/CO4

L3/CO3
$\mathrm{L} 3 / \mathrm{CO} 3$
C) Use the method of separation of variables to solve

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u \quad \text { given that } u(x, 0)=6 e^{-3 x}
$$

L3/CO4 4
D) A bar with insulated at its ends isintiallyttemperature $0^{\circ} G$ throughout. The end $x=0$ is kept at $0^{\circ} \mathrm{C}$ for all times and the heat is suddenly applied so that $\frac{\partial u}{\partial x}=10$ at $x=t$ for all time. Find the temperature function $u(x, t)$

L3/CO4
4

Q. 5 Solve Any Three of the following.

A) Determine k such that the function $f(z)=e^{x} \cos y+i e^{x} \sin k y$ is analytic. L3/CO5
B) Show that $u=x^{2}-y^{2}-2 x y-2 x+3 y$ is a harmonic function and \quad L3/CO5 hence determine the analytic function $f(z)$ in terms of z.
C) Determine the pole of the function $f(z)=\frac{2 z-1}{z(z+1)(z-3)}$ and also find the residue at each pole
\& sum of all residues.
L3/CO5

4

4
D) Evaluate
$\oint_{c} \frac{\sin \pi z^{2}+2 z}{(z-1)^{2}(z-2)} d z$, Where C is the circle $|z|=4$

