DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE.

Winter Examination – 2022			
Course: - B. Tech. Branch: - Common for All branches	Semester:- III		
Subject Code & Name: BTBS301 Eng	gineering M	athematics-	III
Max. Marks: - 60 Date: - 09/03/2023	Duratio	Duration: - 3-Hrs	
Instructions to the Students:			
1. All the questions are compulsory.			
2. The level of question/expected answer as per OBE or the Cours	se Outcome	(CO) on wh	ich
the question is based is mentioned in () in front of the question.			
3. Use of non-programmable scientific calculators is allowed.			
4. Assume suitable data wherever necessary and mention it clearly	•		
	(Level/CO)	Marks	10
Q.1 Solve Any Three of the following.			12
A) Find Laplace Transform of $e^{-3t} \sin^2 t$		L3/CO1	4
B) Find Laplace Transform of $f(t) = \begin{cases} 1 & 0 < t < 1 \\ 0 & 1 < t < 2 \end{cases}$ ENGGSOLUTION	N	L3/CO1	4
where $f(t)$ is periodic function of period 2.			
C) Evaluate using Laplace Transform.: $\int_0^\infty \frac{\cos 4t - \cos 3t}{t} dt$		L3/C01	4
D) Find Laplace Transform of $(1 + 2t - 3t^2 + 4t^3)H(t - 2)$	L3/CO1 4		
Q2 Solve Any Three of the following.		12	
A) Find the inverse Laplace transformation of the function. $\log\left(1 + \frac{a}{s}\right)$	$\frac{2^2}{2}$ L3/0	002	4
B) By using convolution theorem find $L^{-1}\left[\frac{s}{(s^2+4)(s^2+9)}\right]$	L3/0	002	4
C) Find the inverse Laplace transformation of the function. $\frac{5s^2-15s-11}{(s+1)(s-2)^2}$	L3/	CO2	4
D) Solve using Laplace transformation			
$y'' + 3y' + 2y = t\delta(t - 1)$ for which $y(0) = y'(0) = 0$	L3/CO2	1	4

(12) Q.3 Solve Any Three of the following. A) Using Parseval's identity prove that $\int_0^\infty \frac{x^2}{(x^2+1)^2} dx = \frac{\pi}{4}$ L3/CO3 4 B) Find the Fourier transform of L3/CO3 4 $f(x) = \begin{cases} 1 - x^2, & |x| \le 1\\ 0, & |x| > 1 \end{cases}$ L3/CO3 4 C) Find the Fourier Sine transform e^{-ax} , a > 0**D**) Find the Fourier cosine transform of the function $f(y) = \begin{cases} cosy, & 0 < y < a \\ 0, & y > a \end{cases}$ L3/CO3 (12) Q.4 Solve Any Three of the following. 4 L3/CO4 A) Form the partial differential equation by eliminating arbitrary constants from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$ B) Solve the Partial differential equation x(y-z)p + y(z-x)q = z(x-y)L3/CO4 4 C) Use the method of separation of variables to solve 4 L3/CO4 $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ given that $u(x, 0) = 6e^{-3x}$ **D**) A bar with insulated at its ends is initially at temperature 0°C throughout. The end x = 0 is kept at 0 °C for all times and the heat is suddenly applied so that $\frac{\partial u}{\partial x} = 10$ at x = t for all time. Find the 4 L3/CO4 temperature function u(x,t)(12)Q.5 Solve Any Three of the following. A) Determine k such that the function $f(z) = e^x \cos y + ie^x \sin ky$ is analytic. L3/CO5 4 B) Show that $u = x^2 - y^2 - 2xy - 2x + 3y$ is a harmonic function and 4 L3/CO5 hence determine the analytic function f(z) in terms of z. C) Determine the pole of the function $f(z) = \frac{2Z-1}{Z(Z+1)(Z-3)}$ and also find the residue at each pole L3/CO5 4 & sum of all residues. 4 L3/CO5 D) Evaluate

 $\oint_C \frac{\sin \pi z^2 + 2z}{(z-1)^2(z-2)} dz$, Where C is the circle |z| = 4

*** End ***