|  | DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE   <br>  Winter Examination-2023  <br> Course: B. Tech. Branch: E\&TC Semester: III <br> Subject Code \& Name BTEXC302\& Electronic Devices \& Circuits   <br> Max Marks: 60 Date:11/03/2023 Duration: 2:00 To 5:00 PM   |  |  |
| :---: | :---: | :---: | :---: |
|  | Instructions to the Students: <br> 1. All the questions are compulsory. <br> 2. The level of question/expected answer as per OBE or the Course Outcon which the question is based is mentioned in () in front of the question. <br> 3. Use of non-programmable scientific calculators is allowed. <br> 4. Assume suitable data wherever necessary and mention it clearly. | $e(C O) \text { on }$ |  |
|  |  | Level/(CO) | Marks |
| Q. 1 | Solve Any Two of the following. |  | 12 |
| A) | Derive the relation between $\alpha \& \beta$ with respect to BJT. | C01 | 6 |
| B) | In the circuit shown below, for $\mathrm{Rb}=300 \mathrm{~K} \Omega$ and $\mathrm{Rb}=150 \mathrm{~K} \Omega$ calculate Ib, Ic and Vce? | C03 | 6 |
| C) | Draw neat diagram of RC Coupled amplifier and explain in detail. | C03 | 6 |
| Q. 2 | Solve Any Two of the following. |  | 12 |
| A) | Explain E-MOSFET in detail. | C03 | 6 |
| В) | What is CMOS inverter? Explain its transfer characteristics. | C01 | 6 |
| C) | Determine the value of drain current for the circuit shown in Fig. | C03 | 6 |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Q. 3 | Solve Any Two of the following. |  | 12 |
| A) | Explain class c power amplifier in detail. | C02 | 6 |
| B) | Determine the a.c. load power for the circuit shown in fig | C03 | 6 |
| C) | Derive Expression for Maximum Efficiency of Class B Power Amplifier. | C02 | 6 |
| Q. 4 | Solve Any Two of the following. |  | 12 |
| A) | What are the four different types of feedback amplifier? Explain in detail. | C04 | 6 |
| B) | The overall gain of a multistage amplifier is $\mathbf{1 4 0}$. When negative voltage feedback is applied, the gain is reduced to 17.5. Find the fraction of the output that is feedback to the input. | C04 | 6 |
| C) | Explain the principle of positive feedback. | C04 | 6 |
|  |  |  |  |


| Q. 5 | Solve Any Two of the following. |  | 12 |
| :---: | :---: | :---: | :---: |
| A) | Draw a neat diagram of clapp oscillator \& explain in detail. | C01 | 6 |
| В) | $1 \mathbf{m H}$ inductor is available. Choose the capacitor values in a Colpitts oscillator so that $\mathbf{f}=\mathbf{1} \mathbf{~ M H z}$ and feedback factor equal to $\mathbf{0 . 2 5}$ | C04 | 6 |
| C) | i)State Barkhausen criterion for sustained oscillation. <br> ii)Differentiate oscillator from amplifier. | C04 | 6 |
|  | *** End *** |  |  |

The grid and the borders of the table will be hidden before final printing.

