DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Supplementary Summer Examination – 2023

Course: B. Tech.	Branch: Electronics Engineering	g Semester: III	
Subject Code & Na	ne: BTEXC304 Network Theory		
Max Marks: 60	Date: 18/08/2023	Duration: 3 Hr.	
Instructions to the S	tudents:		
1. All the question	ons are compulsory.		
2. The level of q	uestion/expected answer as per OBE o	or the Course Outcome (CO) on	
which the que	stion is based is mentioned in () in fro	ont of the question.	
3. Use of non-pr	ogrammable scientific calculators is a	ellowed.	
4. Assume suital	ble data wherever necessary and menti	ion it clearly.	
		(Level/CO) M	Iarks
Solve Any Two of th	e following.		12
Write the mesh equa currents, I_1 , I_2 and I_3 .	tions for the circuit shown in Fig. and	determine the CO1	6

B) State Superposition Theorem. Find the voltage across the 2 Ω resistor in **CO1 6** Fig. shown by using the super-position theorem.

C) Explain KCL and KVL with Example

Q.2 Solve Any Two of the following.

Q.1

A)

- A) Explain Circuit elements in the s-domain
- B) Determine the current i if the circuit is driven by a voltage source as shown in Fig. The initial value of the voltage across the capacitor and the initial current through the inductor are both zero.

CO1

CO1, CO3

6

12

6

6

C) Determine the current i for $t \ge 0$ if Vc (0) = 4 V for the circuit shown in **CO1, CO3** 6 Fig.

Q.3 Solve Any Two of the following.

A series RL circuit with R = 30 W and L = 15 H has a constant voltage, **CO1, CO3** 6 A) V = 60 V applied at t = 0 as shown in Fig. Determine the current i, the voltage across resistor and the voltage across the inductor.

- **B**) Derive an Expression for DC response in an R-C circuit **CO1, CO3**
- C) For the circuit shown in Fig, find the current equation when the switch is **CO1** changed from position 1 to position 2 at t = 0.

Q.4 Solve Any Two of the following.

Find the transmission parameters for the circuit shown in A)

B) Find h parameters for the network in Fig **CO1, CO4**

6

6

12

12 6

6

CO1, CO4

C) In a two-port bilateral network show that AD - BC = 1 CO1, CO4 6

12

6

Q.5 Solve Any Two of the following.

A) Obtain the incidence matrix A from the following reduced incidence CO1 matrix A1 and draw its graph.

[A ₁] =	[-1	1	0	0	0	0	0
	0	-1	1	1	0	0	0
	0	0	0	-1	1	0	0
	0	0	0	0	-1	1	0
	0	0	-1	0	0	-1	1

- **B**) Write Laplace transform of some standard Network Functions. **CO1** 6
- C) Obtain first form of foster network for the driving point impedance of LC CO1, CO3 6 Network given as

 $Z(s) = 10(s^2+4)(s^2+16) / s(s^2+9)$

*** End ***