Supplementary Summer Examination - 2023
Course: B. Tech. Branch: Electronics Engineering
Semester: III
Subject Code \& Name: BTEXC304 Network Theory
Max Marks: 60
Date: 18/08/2023
Duration: 3 Hr.

Instructions to the Students:

1. All the questions are compulsory.
2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
3. Use of non-programmable scientific calculators is allowed.
4. Assume suitable data wherever necessary and mention it clearly.

Q. 1 Solve Any Two of the following.

A) Write the mesh equations for the circuit shown in Fig. and determine the currents, $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}.

B) State Superposition Theorem. Find the voltage across the 2Ω resistor in Fig. shown by using the super-position theorem.

C) Explain KCL and KVL with Example

CO1
Q. 2 Solve Any Two of the following.
A) Explain Circuit elements in the s-domain

CO1, CO3
B) Determine the current i if the circuit is driven by a voltage source as shown in Fig. The initial value of the voltage across the capacitor and the initial current through the inductor are both zero.

C) Determine the current ifor $\mathrm{t} \geq 0$ if $\mathrm{Vc}(0)=4 \mathrm{~V}$ for the circuit shown in Fig.

Q. 3 Solve Any Two of the following.

A) A series RL circuit with $\mathrm{R}=30 \mathrm{~W}$ and $\mathrm{L}=15 \mathrm{H}$ has a constant voltage,

C01, CO3 $\mathrm{V}=60 \mathrm{~V}$ applied at $\mathrm{t}=0$ as shown in Fig. Determine the current i , the voltage across resistor and the voltage across the inductor.

B) Derive an Expression for DC response in an R-C circuit
C) For the circuit shown in Fig, find the current equation when the switch is CO1, CO3 changed from position 1 to position 2 at $t=0$.

Q. 4 Solve Any Two of the following.
A) Find the transmission parameters for the circuit shown in

CO1, CO4

B) Find h parameters for the network in Fig

C) In a two-port bilateral network show that $\mathrm{AD}-\mathrm{BC}=1$

CO1, CO4
Q. 5 Solve Any Two of the following.
A) Obtain the incidence matrix A from the following reduced incidence CO1 matrix A1 and draw its graph.

$$
\left[A_{1}\right]=\left[\begin{array}{rrrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 1
\end{array}\right]
$$

B) Write Laplace transform of some standard Network Functions.

CO1
C) Obtain first form of foster network for the driving point impedance of LC

CO1, CO3 Network given as

$$
Z(s]=10\left(s^{2}+4\right)\left(s^{2}+16\right) / s\left(s^{2}+9\right)
$$

*** End ****

