undefined
(b)
If ꢒ(ꢆ) is a homogeneous function of degree ꢓ in ꢀ & ꢁ, then show that
ꢉꢑ
ꢔ
ꢑ + 2ꢀꢁ
ꢉꢑꢔ
ꢉꢑꢔ
ꢘ(ꢔ)
ꢀꢎ ꢉ
+ ꢁꢎ ꢑ = ꢕ(ꢆ) ꢖ ꢕ′(ꢆ) − 1 ꢗ where ꢕ(ꢆ) = ꢓ
.
ꢊ
ꢉꢊꢉꢋ
ꢉꢋ
ꢘ`(ꢔ)
ꢊꢑ
ꢊ
ꢐꢋꢑ
ꢐꢋ
(
c)
d)
Verify Euler’s theorem for ꢆ =
.
(
If ꢂ = ꢒ(ꢆ, ꢙ) where ꢆ = ꢚꢀ + ꢛꢁ ꢜꢓꢝ ꢙ = ꢚꢁ − ꢛꢀ, then show that
ꢉꢑ
ꢌ
ꢉꢑꢌ
ꢉꢋꢑ
ꢉꢑꢌ
ꢉ ꢌ
ꢑ
= (ꢚꢎ + ꢛꢎ) ꢈꢉꢔꢑ + ꢉꢞꢑꢍ .
+
ꢊꢑ
ꢉ
Q.3 Attempt any three from the following:
4 X 3 = 12
(a)
Show that ꢟ. ꢟ′ = 1 If ꢀ = ꢠꢔꢡꢢꢣꢙ & ꢁ = ꢠꢔꢣꢤꢓꢙ .
ꢥ
Expand ꢒ(ꢀ, ꢁ) = sin(ꢀꢁ) in the powers of (ꢀ − 1) & (ꢁ − ꢎ ) by using Taylor’s
(b)
Theorem.
(
c)
d)
Discus the maxima & minima of ꢀꢁ(ꢜ − ꢀ − ꢁ) .
ꢦꢧ
ꢨꢧ
ꢩꢧ
ꢌꢑ
(
If ꢆ = ꢊꢑ + ꢋꢑ +
where ꢀ + ꢁ + ꢂ = 1, then find the stationary values
by using Lagrange’s method of multipliers.
Q.4 Attempt any three from the following:
4 X 3 = 12
ꢪ
(a)
Evaluate
∫ ꢀꢇ√4ꢀ − ꢀꢎ ꢝꢀ .
ꢫ
ꢁꢎ(4 − ꢀ) = ꢀ(ꢀ − 2)ꢎ .
(b)
(c)
(d)
Trace the curve
Trace the curve
Trace the curve
ꢬ = ꢜ cos(2ꢭ) .
ꢀ = ꢜ(ꢮ + ꢣꢤꢓꢮ)
ꢁ
= ꢜ(1 − ꢡꢢꢣꢮ) .
Q.5 Attempt any three from the following:
4 X 3 = 12
(
a)
b)
Change the order of integration & evaluate it
ꢅ
ꢅ
∫ ꢀꢎꢠꢊꢋ ꢝꢀ ꢝꢁ.
∫
ꢫ
ꢋ
(
Change to polar co-ordinates & evaluate it
√ꢎꢦꢊꢄꢊꢑ
(ꢀꢎ+ꢁꢎ) ꢝꢀ ꢝꢁ
∫
ꢎ
ꢦ
∫
ꢫ
ꢫ
ꢅ ꢌ (ꢊꢐꢌ)
∫ꢄꢅ ∫ꢫ ∫(ꢊꢄꢌ) (ꢀ + ꢁ + ꢂ)ꢝꢀ ꢝꢁ ꢝꢂ .
(
c)
d)
Evaluate
(
Find the area outside the circle
inside the cardioide
ꢬ = ꢜ
&
ꢬ = ꢜ(1 + ꢡꢢꢣꢭ).
*
** END ***
2
2
3
D07E6E1D9ECEFE9FCC585CDAAC4D043